AD-AR137 955 SOFTWARE QUALITY MEASUREMENT FOR DISTRIBUTED SYSTEMS 1/2
VOLUME 41<U> BOEING AEROSFACE CO SERTTLE WA

“ T P BOWEN ET AL. JUL 83 RADC-TR-Z3X-175-W0OL-1
UNCLASSIFIED F3@682-88-C-8330 ° :

[~}
Lo
R
s
=
=

¢

k

ARl L N S utlac CoNaoNal aTale

R T E . S ST A

e e ARG e M A W § B Yy e G R R

)
EE

-

3

e i g
e R AT
———
L]
.]
[
3
[14
——

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

g RS e

LD ulyr9ss

Y O

2 D

N SOFTWARE QUALITY MEASUREMENT FOR
= DISTRIBUTED SYSTEMS

.
. Boeing Aerospace Company

R

»

N Thomas P. Bowen, Jonathan V. Post, Juitien Tsal, P. Edward Presson

N and Robert L. Schmidt

y i

f-::

:

N APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED DTIC

W ELECTE
91 ‘ FEB 15 1984
)

ROME AIR DEVELOPMENT CENTER
i Alr Force Systems Command
X Griffiss Air Force Base, NY 13441

LSRR RO A v e b it St et) ; K O R I e e .

*»
g

‘s

PP
p

533,
‘R
This report has been reviewed by the RADC Public Affairs Office (PA) and is ,;
releasable to the National Technical Information Service (NTIS). At NTIS 4t will
be releasable to the general public, including foreign nationms. y

AN

‘.2,

§

RADC-TR-83-175, Vol I (of three) has been reviewed and is approved for .
publication.

s
.ﬂ l‘ .'

»
s %

[
4

N
“ .l

3 .'f'."."-. /

X2

E S &

.

VIR

smor: Jucph F (s

JOSEPH P. CAVANO
Project Engineer

A%

PR XN

v + APPROVED: ,ﬂ£;32227

- RONALD S¢{/ RAPOSO
0 Acting Chief, Command & Control Division
..-' .
= FOR THE COMMANDER: % / %«q_,
.;1',
v JOHN P. HUSS
! Acting Chief, Plans Office
-
:} If your address has changed or if you wish to be removed from the RADC mailing list,
4" or if the addressee is no Jonger employed by your organization, please notify
:} RADC (COEE), Griffiss AFB NY 13441. This will assist us in maintaining a current
- mailing list. . : ,
,f: Do not return copies of this report unless contractual obligations or notices on a
> specific document requires that it be returned.
i
(]
':,n
§

K . e ey, = - P - v e @ . . e . P SV T T TR P N N L - - LR »
- \.. ‘e -._.... -~ -,;'...- '.- . ..- P X .: RO ,'-',.' .'-'t. EARCAEREN " . .'...' AR AJCRUAN _-.'. "’\f « \._\.n‘-s. \.‘\..\..*. ;:. .‘_ -“-\".\'-x‘ -_~ "o
d A 2 A > 3 - | v -

O,
IS

)
A’ a

AP AT

a s Jo Y
)
atelta

‘}"..,

4

N,

SECURMITY CLASSIFICATION OF THIS PAGE (When Dete Bnteced)

Final Technical Report
October 80 -~ March 83

6. PERFORMING ORG. REPORT NUMBER

SOFTWARE QUALITY MEASUREMENT FOR
DISTRIBUTED SYSTEMS

7. AUTHOR(®) "CONTRACT OR GRANT NUMBER(s)

Thomas P. Bowen P. Edward Presson

Jonathan V. Post Robert L. Schmidt F30602-80-C~0330

Juitien Tsai

9. PERFORMING ORGANIZATION NAME AND ADORESS 10. ::gg..A=°¢RLK!==|~T"N’U.M°"E!£:' TASK

Boeing Aerospace Company

PO Box 3999 62702F
55812030

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORYT DATE
July 1983

Rome Air Development Center (COEE) 5 %"" TRTCTT]

Griffiss AFB NY 13441 138

TS " MONITORING AGENCY NAME & ADDRESS(I{ dilferent from Controlling Office) | 15. SECURITY CLASS. (of this report)
UNCLASSIPIED

Same [18a. DECL ASSIFICATION/ DOWNGRADING |
N/A SCHEDULE

6. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. OISTRIBUTION STATEMENT (of the sbetract entered In Block 20, il different from Report)

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Joseph P. Cavano (COEE)

19. KEZY WORDS (Continue on reverse side If necessary and identily by block manber)
Software Quality Software Expandability
Software Metrics

Software Measurement

Software Survivability

20. ABSTRACT (Continue on reverse elde If necessary and identily by block mamber)

Software metrics (or measurements) which are used to indicate and predict
levels of software quality were extended from previous research to include
considerations for distributed computing systems. Aspects of the products
of software life-cycle activities which could affect the quality levels of
software, and metrics to measure them, were identified. 7Two new quality
factors, survivability and expandabilfity, were validated. A Guidebook for

REPORT DOCUMENTATION PAGE BEF ORI TN R |
T RAPSRY nUnSEN - GOVT ACCEISION NOJ 3. RECIPIENT'S CATALOG NUMGER |
~TR=83— Y lpb-mw‘/‘ss
4. TITLE (and Subtitle) S. TYPEZ OF REPORY & PERIOD COVERED

Software Quality Measurement was produced to aid in setting quality goals, -|

FORM
[+ + I AN 73 1473 coition oF 1 nOV 68 18 OBsOLETE UNCLASSIFTED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

.‘») P

U A S
'i.‘v"'

.
PN

oo,

]

RPN

R A

." /. e

* 2 UNCLASSIFIED
R \ﬁwmm :
‘_l f} applying metric measurements, and making quality level assessments. New
AR metrics for interoperability and reusability were also included in the
guidebook.

4

k4

X
Bl

)

5

g

DTIC

: ELECTE

N

. FEB1 5 1984
B

""; '

S

=
%:: Accession For

Ry NTIS GRARI

e DTIC TAB a

) Unannounced g

. Justification

3¢

5 3‘5 By
5N Distribution/

Availability Codes

. Avail and/or

1; : IDist Special

S v 4

IR

Gy

B

R UNCLASSIFIED
‘g SECURITY CLASSIFPICATION OF Tvi* BAGE(When Data Ente:
:?]

-l N NP ‘ ' LJ
“)"‘; ST,

PREFACE
. This document is the final technical report (CDRL A003) for the Quality Metrics for
Distributed Systems contract, number F30602-80-C-0330. The contract was performed
for Rome Air Development Center (RADC) to provide methodology and technical
; guidance on software quality metrics to Air Force Software acquisitions managers.
o This report consists of three volumes as follows:
AN
~

Volumel Software Quality Measurement for Distributed Systems - Final Report
Volume I Guidebook for Software Quality Measurement
\\ Volume Il Distributed Computing Systems: Impact on Software Quality

The objective of this contract was to conduct exploratory development of techniques to
measure system quality with a perspective on both software and hardware from a life
cycle viewpoint. The effort was expected to develop and validate metrics for software
quality on networked computers and distributed systems; i.e., systems whose functions
may be tightly distributed over microprocessors or specialized devices such as data base
machines. At the same time, the effects hardware has on software was to be studied, as

is well as the trade-offs between hardware, firmware, and software. The results of this
N i h, joeng .
W research are reported in Volumel._ '/' S Yo (’ e

Volume II describes the application of quality metrics to distributed systems and provides
guidance for AF acquisition managers. The guidebook provides guidance for specifying
and measuring the desired level of quality in a software product.

Volume III describes a qualitative study of distributed system characteristics, reasons for
selection, design strategies, topologies, scenarios, and trade-offs. These analyses led to
the changes in the Framework shown in Volume I, and to the validation of models.

-
A

ﬁ-'v- TAEIAL ;:.p e
.'.\....r 4’\-) AR .- ~’
[T YAl WA

13 r
. TABLE OF CONTENTS .
R Page ;
% SECTION B
P 1.0 EXECUTIVE SUMMARY 1-1 :

1.1 OBJECTIVES OF RESEARCH 1-1 .
e 1.2 BACKGROUND 1-1
i:; 1.3 TECHNICAL APPROACH 1-5 o
b 1.4 SUMMARY OF ACCOMPLISHMENTS 1-9 §
1.4.1 Framework Changes 1-10)
f;%-? 1.4.2 Design Guidelines and Tradeoff Analyses 1-11
LY 0
f.e;;f,a 1.4.3 Quality Metrics Guidebook 1-11
BN 1.4.4 Data Collection, Analyses, and Validation 1-12
. 1.5 CONCLUSIONS : 1-12
33
l 2.0 SOFTWARE QUALITY FRAMEWORK ENHANCEMENTS 2-1 |
2.1 INITIAL FRAMEWORK 2-1 -
i : 2.1.1 Quality Model 2-1
;:f? 2.1.2 Framework Elements 2-]
";. 2
) 2.2 FRAMEWORK ENHANCEMENTS 2-3
':‘H'
;s 'j 2.2.1 Quantitative Change Summary 2-3 ';
ik 2.22 Metric Categorization 2-8 :
Y 2.2.3 Life Cycle Phases 2-8 -
2.2.4 Worksheet Categories 2-8
i & .
A :
R 2.3 TRANSITION TO NEW FRAMEWORK: SUMMARY OF VOLUME IlI 2-12 X
| AN 'IE ’ -
| 3.0 DISTRIBUTED SYSTEM QUALITY METRICS FRAMEWORK 3-1 i
) ,.1 3.1 SOFTWARE QUALITY FRAMEWORK 3-3 y
i.j ' 3.1.1 Software Quality Factors 3-3 X
Y 3.1.2 Software Quality Criteria 3-10
-ii- ;
{ ;; 5 ;gj: 2 :g;:;,. ;s:.' §~'. ;-:;}?5;..:;:{:1:::5}255:;’}5:{:-’:-’:{.’} "?i;’-':‘ o 'J*’ ~ _~~. 5 RO S i ST =
R AR N RS SRR A

Vst

> ..%:W‘ ") LR

g are g o A
AT

R

0.0

5.0

TABLE OF CONTENTS (Continued)

3.1.3 Software Quality Metrics

3.2 SYSTEM QUALITY FRAMEWORK
3.2,1 System Quality Factors
3.2,2 System Quality Criteria
3.2,.3 System Quality and Software Quality Correspondence

TRANSITIONAL STUDY

4.1 FACTORS STUDIED AND DROPPED
4.2 CRITERIA STUDIED AND DROPPED
4.3 METRICS STUDIED AND DROPPED

VALIDATION

5.1 VALIDATION OF QUALITY MODEL
5.1.1 Overview of Validation Effort
5.1.2 Selection of Projects for Validation
5.1.3 Selection of Modules for Validation

5.2 DATA COLLECTION
5.2.1 Metric Worksheets
5.2.2 Quality Rating Questionnaires

5.3 DATA ENTRY
5.3.1 Metric Data Entry Files
5.3.2 Quality Rating Entry
5.3.3 Data Entry in "S"

5.4 DATA ANALYSIS
5.4.1 Expandability Data Analysis
5.4.2 Survivability Data Analysis

-iij-

Page
3-19

3-23
3-23
3-26
3-26

4-1
4-1
4-2

3-1
5-1
5-1
5-2
5-3

3-5
3-5
3-5

3-7
5-7
5-9
5-9

5-9
5-9
5-17

[N N
LS
s

LA Tt e g
Wt e L

‘: R .

LR o ¢ £
X ra A

» e T TR
{'{ DOERAAES

.._' §;‘ -;':;'.:;":a:‘:é '1:"".- r

;;\
ss

Y

i\
'\

AW

"
)
3

TABLE OF CONTENTS (Continued)
5.5 CONCLUSIONS
5.5.1 Expandability Conclusions
5.5.2 Survivability Conclusions
6.0 RECOMMENDATIONS FOR FUTURE RESEARCH
6.1 QUALITY FACTORS AND CRITERIA
6.1.1 Ultrastability
6.1.2 Protetypeability
6.1.3 Distributedness, Integration, and Transparency
6.1.4 Parallelism vs. Provability
6.1.5 Responsiveness vs. Consistency
6.2 CENTROID OF A DISTRIBUTED SYSTEM
6.3 REFERENCES FOR FUTURE RESEARCH
APPENDIX A BIBLIOGRAPHY
APPENDIXB GLOSSARY OF KEY TERMS
APPENDIX C VALIDATION WORKSHEETS
APPENDIX D RATING QUESTIONNAIRES
~fy=
\S‘ﬁ." "'-. «.$ ~. \}\": . -.‘

,4 A%
b

)
LRI

Page

3-26
3-26
3-27

6-1
6-1
6-1
6-1
6-2
6-3
6-3

6-4
6-9

A-1
B-1
C-1
D-1

1] :-f ' '.'.'."'.f.'.:':

vy '\.'c"
a e

o

TS

e

-ty S
VYWY

3

RARRINE | | TRRIIAR | |oAhln:

P L

T ‘.‘.\“- ot

)

ey e i ot 290 AR 5 Lt S i e ariicyin o RS AN e M A A I
‘2l .
2 LIST OF FIGURES o
e Figure Title Page
g} 1.1-1 Software Quality Model/Framework 1-2 ::::
& 1.3-1 Quality Metrics for Distributed System Task Flow 1-6 3
T S
2.1-1 Relationship of Criteria to Software Quality Factors 24 :
5
R 3.0-1 Software Quality Model 3-2
B 3.1-1 Relationship of Criterion to Software Quality Factors 3-13
§ 3.2-1 Relationship of Criteria to System Quality Factors 3-27 e
4 | 4
§g 5.4-1 Expandability Individual Criteria Scores for all Projects vs. :'.-j-
: Individual Rating Values for all Projects 5-13 oy
g 5.4-2 Expandability Mean Criteria Scores vs. Mean Criteria Rating >
g Values 5-14 i
i 5.4-3 Expandability Mean Criteria Scores vs. Factor Rating Values 5-15 o
' 5.4-4 Expandability Mean Criteria Scores vs. Man-Month Ratios 5-16 o
‘ 5.4-5 Survivability Individual Criteria Scores for all Projects vs. -
g Individual Criteria Rating Values for all Projects 5-20 PR
% 5.4-6 Survivability Mean Criteria Scores vs. Mean Criteria Rating Values 5-21 \
i 5.4-7 Survivability Mean Criteria Scores vs. Factor Rating Values 5-22 o
5.4-8 Survivability Mean Criteria Scores vs. Mean Criteria Rating Values 5-24
5.4-9 Survivability Mean Criteria Scores vs. Factor Rating Values 5-25 . :
S
L'::
N
2
e
-
b "
N
2
-
-
Ve :_-.
.\
R A T S oy D i e e .
S ™ N N N N A AN AN S Wt M N SRy NSO ON A NN RN

f‘:‘f

T e
P A

vy ‘
oY Ay Y

. “ Tl e R
A Gy LG = a3 WV

a €A

{ A

2.1-1
2.1-2
2.2-1
2.2-2
2.2-3

3.1-1
3.1-2
3.1-3
3.1-4
3.1-5
3.1-6
3.1-7
3.1-8
3.1-9
3.1-10
3.1-11
3.2-1
3.2-2
3.2-3
3.2-4

5.3-1
5.4-1
5.4-2
5.4-3
5.4
5.4-5
5.4-6
5.8-7
5.6-8

LIST OF TABLES
Title

Software Quality Factors

Metric Table Example

Metric Table and Worksheet Changes
Criteria and Metric Changes

Metric Worksheets Summary

Quality Life-Cycle Scheme

Software Quality Factor Definitions

Relationship of Quality Factors to Life-Cycle Phases
Relationships Between Software Quality Factors
Relationships Between Software Use and Quality Factors
Typical Factor Tradeoffs

Software Quality Ratings

Software Quality Factors and Criteria

Software Quality Criteria Definitions

Effect of Criteria on Software Quality Factors
Metric Tables Summary

System Quality Factor Identification

System Quality Factor Definitions

Distributed System Quality Factors and Criteria
Relationship Between System and Software Factors

Metric Values: All Projects, All Worksheets
Expandability Criterion Scores

Expandability Quality Rating Values

Summary of Statistical Analysis for Expandability
Survivability Criterion Scores

Survivability Quality Rating Values

Summary of Statistical Analysis for Survivability
Survivability Criteria Scores, Worksheets |1 and 2

Summary of Statistical Analysis for Survivability, Worksheets ! and 2

Vi~

Page

2-2
2-6
2-7
29
2-]11

3-4
3-5
3-7
3-8
3-9
3-11
3-12
3-15
3-16
3-20
3-21
3-24
3-25
3-29
3-30

5-8
5-10
3-11
3-12
3-17
5-18
5-18
3-23
5-23

e 1,0
¢ T
SN

-
: ."‘ PP

- - .-
N . R
.

O)
.
]

ryre

LU
| P
NN

....
'l"' 'l .l
"' ".l £

....
v ey
f‘l ,

|- N
Y

‘s
p_»

A

K
R

‘k
)f.
V.

b S 5 0]

o E S,

SECTION 1.0
EXECUTIVE SUMMARY

L1 OBJECTIVES OF RESEARCH

This work was performed under a research contract (F30602-80-C-0330) for Rome Air
Development Center, Griffiss AFB, NY. The object of this effort was to develop
techniques which can be used to measure distributed system software quality. The study
looks at both hardware and software from a life cycle viewpoint, studies the effect that
hardware or operating environments, i.e., distributed systems, have on software quality,
and studies tradeoffs between hardware, firmware and software. This study was
conducted to develop and validate proposed metrics for software quality on netwe. .d
computers and distributed systems. This effort was also conducted to expand and r e
the software quality measurement framework defined in prior Government (R 7T)
contracted worké Factors in Software Quality, F30602-76-C-0417 and Software Qu .r
Metrics Enhancement, F30602-78-C-0216.

1.2 BACKGROUND

Rome Air Development Center (RADC) has been pursuing a program intended to achieve
better control of software quality since 1976. This program has been seeking to identify
the key issues and provide a valid methodology for specifying and measuring software
quality requirements for software developed for major AF weapon systems.

In 1976 RADC and the Electronic Systems Division (ESD) sponsored an effort which
defined a set of eleven user-oriented characteristics or quality factors (correctness,
efficiency, integrity, usability, testability, flexibility, reusability, maintainability, relia-
bility, portability, and interoperability) which extended throughout the software life-
cycle. This effort established a hierarchical software quality measurement framework as
shown in Figure 1.1-1. The user-oriented factors, for use by acquisition managers to

- e Tg W, ¥ A S AR 2 A A A DA R ey A) PR LR Lt o, AR S \~E:'—‘.|('."-ri-r'r"."-('-\':’
.

t A -
L] Y
- -

i

>

%

>

-

“~

USER-ORIENTED VIEW OF

S FACTOR PRODUCT QUALITY

X SOFTWARE-ORIENTED
- (CRITERION j(CRITERION)(CRITERION j ATTRIBUTES WHICH

' INDICATE QUALITY

) [I C

o | 1

’

. METRIC METRIC METRIC QUANTITATIVE MEASURES
) OF ATTRIBUTES

\

A)

)

%
A Figure 1.1-1 Software Quality Model/Framework

1-2

YV IS T ‘r'l--r-;—;rv.-z..—W
. - . .. - . -

R

A

“- specify quality requirements, are at the top level. The software oriented criteria
Ei_ (attributes which indicate quality) and software metrics (quantitative measures of
- attributes) are at the second and third levels respectively. The metrics represent the
oy most detailed level of the framework and completely define quality in terms of
<3 measurable elements. Taken collectively, this hierarchy formed the basis of a model for

predicting and controlling software quality. This research was performed under contract
F30602-76-C-0417, and was described in technical report RADC-TR-77-369, Factors in

Software Quality.

‘D

-
=

:_ In 1978, RADC and the US Army Computer Systems Command sponsored additional
Y research to enhance this framework under contract F30602-78-C-0216, Software Quality
: Metrics Enhancement. The results of this effort were reported in technical report
‘{:: RADC-TR-80-109, Volume 1, Software Quality Metrics Enhancement and Volume II,
2¢¢ Software Quality Measurement Manual. The manual provides methodology to assist the
' AF acquisition manager in describing to a contractor what quality factors the manager
'.', considers the most important.

3

'_'E‘}’: In 1979, RADC and the US Army Computer Systems Command issued contract F30602-
79-C-0267 to develop an Automated Quality Measurement Tool for the H6180/GSOS
o Computer system. The purpose of this tool was to automate the collection of specific
:_: metric data, and to provide quality measurement assessments. This tool was delivered to
-_(:f: the Air Force in September 1981.

N

,. In 1980, RADC sponsored further research of the software factors of interoperability and
;::3 reusability (Contract F30602-80-C-0265). The objective was to enhance the Software
,';::: Metri:: Model by incorporating new findings for these two factors which had not been
. ' extensively studied in prior research contracts. The contract resulted in adding new
- criteria and metrics for these factors. The results of this effort are incorporated in
(Volume il of this report (Software Quality Measurements Manual).

s In 1980, RADC also sponsored this research contract to extend the quality measurement
g‘ framework to distribuied systems and to transition the information into a form useful to
::f-:- the AF software acquisition manager. The prior research focused primarily on the
:':j software subsystem and largely ignored the total system aspects such as the computing
" hardware, operating system and communications network. The increasing demand and
importance of distributed systems in future defense systems created a need to extend the
3

1-3

v,

p
J

-
'-_-

4a

}z}:i‘ﬁ*@ .}\.;-' :.f.':" =~ ‘{‘- RN -:w_.:._\ .:

¢ I Ny \I‘ '1'.‘#“.' S "-

Ytk

: ? framework to address system quality concerns which affect the emphasis and meaning of
X software quality. The system quality concerns cha..ged the emphasis of a software quality
factor, criterion or metric and required modifications and additions to the software
o quality framework.

::\'_' It will be increasingly important to understand distributed computer systems. Some of .-
~ .
- their characteristics will emerge more extensively in future configurations. One 5
characteristic peculiar to distributed systems, and of importance in the 1980's, is f\
W .'. - - - » - - - . (. °
ol geographic dispersion. The extent to which computers within a distributed system can be ro-
. . . . Y
physically displaced from each other, range from the centimeter to the multi-thousand- -~
. P

kilometer. Computers will be "tightly-coupled" over intercontinental distances by fiber-
optics technology currently under research. Interconnection of even a very small
percentage of available computers will be able to form distributed systems of complexity

beyond those of today, since by 1999 there will be on the order of one billion computers in
the world.

efoncan
YNV

L

Ry

I s 8
Mo

PR AL S Ve b ap a4 PR A Tt e DAY ik N Wi Mt S AN N A Al T Ak N AR A AN AR

1.3 TECHNICAL APPROACH

The approach to this problem was to use the previous work accomplished by RADC (see
section 1.2) as well as previous Boeing software quality metrics research as a baseline.
The technical approach was divided into a series of 9 tasks in order to accomplish the
objectives of section 1.1 and the requirements of section 4 of the contract statement of

work.

Task 1: Identify distributed system characteristics

Task 2: Define system quality perspective

Task 3: Determine effect of H/W and F/W on S/W quality
Task 4: Develop software prediction and control methodology
Task 5: Refine and expand quality framework

Task 6: Select quality metrics for validation

Task 7: Develop scenarios and collect data

Task 8: Validate metrics

Task 9: Integrate results into a guidebook

Figure 1.3-1 summarizes the interrelationships among these tasks.

In Task 1, the characteristics that distinguish distributed systems from uniprocessors and
centralized processors were identified. Distributed systems were analyzed from several
standpoints, including: rationale for selecting a distributed system architecture;
characterization of the distributed system design philosophy; and impact of hardware
architecture on distributed system quality factors. The results served as input to Tasks 2
and 3, are reported in Volume III of this report, and are summarized in section 2.3 of this

volume.

In Task 2, a framework for including software in the process of allocating system
requirements and quality goals was developed. Distributed system quality factors were
developed and related to software quality factors and the impact of system quality was
assessed. The results provided input to Tasks 3 and 5 and are reported in section 2.2.

By . . e e
n"?" LR
l‘l" ‘W T

‘- ‘l 'l 'l
B A
g L

Aty
e
+ € 0

v

TR]
DA
LA

¥ v ey

l' .
‘l 'l
'
|

PR e N PR
’.'..‘.‘-.. '|.‘v 3 'P‘.-'.:"-.'l"
. NAUNS - T A .

.

4

...
..

A A
N T

A 2"
. ol
4 NOWUVININNIOG DULIN ‘MIIATY JUNLVIHILI ‘VAV] ONIBOS wm s
- .-“ \!.. A
A »
e
BONIINBIXE CRLVIZN ONISOS e
ANOMINTVMY SLAZHENVOM NVIIN © MIIATY SUNLVEILIN AWOMINVEA ALITVNO IOV FUNLVERLN ov P
AMIVND 20V SANININZOIMLIN | 3ON3NNIAX3 103rONe DNIZDE FUMUVNIAN | FEISASGALNSINASIO DNIZOE 20t
mr v
YA .
L
, AL~
grrs
s
L)
aw ._M-\- o° g
- 1-\\-1--!'.
n.\um...b.
, SUOLIVA IVILIND DNIARINIO! OL SINNGAIONE JO INBNINIIIN AR
e | e -t \ A
OIBAIY anvaxs [Socaovui| A°0'QOOML3 { i
- - VIVB 0] 5 2T SHOILOI03 ALRY ALITVNO WatsAs A
IUVMLIOS d012AI0| S32000VNL VN0 JUVMLIOS FALLIBeSUDY SNSNILOVED A
- SUOLIV4 g uss.lw...u NO 3UVMINMIY | ALITVNO W31SAS M0 s WRASAS N A
Sw020V4 | ONV JUVMOUVN 40 ' ORANSINLSI0 o o
n 433443 SNiWWALIQ NOIS3Q ASILNDON S X
$44030ViA ALITVID LIVt ADILVILS NDISRO L QA
L
b I‘ w I.
— s NSVl _ vusva _ THSVA _ sxIVL _ 1sva My

MO[4 Y38] RUSISAS pRnqQuISI] 20} SBey Ayenp T-€°T 81

o e % Y TSR P oD P o o ey 3 ey o, e RN
e ol L '~y I o - y p Y 3 RN Fa— pai? ¢, ¢
L S e A A IR S I e R e T

e

.
PR

rd

ARV, AR B SICRUCIOIG | § MVACAXRN) ey, YROCRathiiir) | MO | SSANAINAY: | - ORNAOEY - OMANAORAY | LEREEALA: L,

NOLVININNIO0T DIMLIN
S193r0Ud DNIOE ‘MIAZY JUNLVVILIT 'VIVO DNIBOS
L]
vive vivo NOLLVGITVA
1oave 193F0ud ANIUMND
~
21von 9 -
PE— Ib(lﬂ!—.‘.
2190y SNOLLNUDSNa | giotAIn |
esneay| MVOVA I.Na..ﬂi ooy
001 NOI3531700 QI LVINOLNY
GNV ‘VAVQ ‘SOINYNIOS Divisn
40 138
oInIA3N
NUONINVES OITIATE
ADOTOOOHLIN TOUINGD ONV NOILDIOBNG
!
sxeva smva Lsva sV o
[]
:H...
XY
ML Yo RURISAS pRINGLISIC 40} 4Rep ARND 1-C*] 3anB1yg N
el
] .'
-!1\\‘1“." H
k-
L~
SATR" 8 Y = p 3 AR SR RS SR Pt c-*’.v =

B .\g : o o, v WA POV WYV T o i 4 :
P SARANA R 7 L%, oy e X3 : NN TRE T y NN L AR | ’ Ly S A te
O\ iy TRAKG BANy, XK WO0ON, BASESS WNNAY| SORRYL DRSS ven sl

L

g

LU B A AR i St e Gyt A Rl RPN I e I DA IR A 2 A A AL AN WA M AU i A A AR AR)

N

%N
\; In Task 3, the dxstnbuted system design process was analyzed from several points of view,
N3 looking at issues that arise in allocating system quality requirements to hardware and k
software. Issues that arise between acquisition managers - system/software, software/ "J
\ -,g hardware and between acquisition managers and contractors were addressed. Distributed L*
‘_:, system trade-offs among hardware, firmware and software were identified. Task 3 results
gx: provide input to Task # and are reported in section 6.3 and 7.2 of Volume IIL
: =
,r.f, In Task 4, prediction and control methodology was developed for analyzing a distributed
?:_tf system in terms of software quality. The methodology includes assessment of the >
T influence of system elements to enable design latitudes in achieving desired quality of f.,
e software. The results are input to Task 5 for updating the framework and are reported in &
q Sections 3, 4, and 5 of Volume III, s
= A
'_: In Task 5, the software quality measurement framework documented in prior RADC Iy
* Technical Reports, "Software Quality Metric Enhancement" and "Software Quality &
;::: Measurement Manual", (RADC-TR-80-109, Vol. I & II) was refined, expanded, and i
v I:f improved for factors relevant to distributed systems. The metric worksheets and tables -
,’.{j were modified based on the results of prior Tasks. These results are used in Task 6 to aid '
in selecting metrics to be validated and are reported in section 3.0 of Volume IIL. .
2 ‘3’
¥ In Task 6, those metrics that will make the greatest contribution to validating the >
:E: framework were selected based on the number of criteria to which the metric is "
s applicable, the expected sensitivity of quality factors to the metric, the results of .
: previous validation efforts, the value of the metric in establishing trade-offs between o
:_‘;::' quality factors and between HW/FW/SW, and the results of pilot testing. Selected metrics .
i__s are input to Task 7 and are reported in section 5.0. =
»
N In Task 7, scenarios for data collection were identified and designed, and data was
‘.\:3 collected to perform validation. Data was collected from Boeing projects with distributed
: .:s systems. The potential for automated data collection was assessed. These scenarios were
s used to collect data in Task 8 and the results of this Task are reported in section 5.2. t
%Y o
j In Task 8, the validation techniques used in RADC-TR-77-369 were reviewed and
j:f compared against other methods and refinements were made. Methods such as regression ::'
. analysis without forcing the line through the origin and use of stepwise multiple regression {
NN were investigated. The metric data was collected from selected Boeing projects and the : :
% ‘~
18 :

%

5 U
S

y Ay M,
Y, .'h:'nd‘l'.'n." .

2 2 el

e o
)

-l
A

Ly

WL

B

po -3 a¥ §2 £ SENA e AR N v LAY ~ - Dl TN

results evaluated to update the metric worksheets and validate the methodology. The
results of this validation effort are reported in section 5.3 and 5.4.

In Task 9, all of the results of the other tasks were integrated incrementally to prepare
contract reports and the guidebook. Volume I, Software Quality Measurement for
Distributed Systems, includes an Executive Summary, the Factor/Criterion/Metric
Framework, and the Statistical Validation. The guidebook describing how to use quality
metrics for distributed systems is contained in Volume II, Guidebook for Software Quality
Measurement. Volume III, Distributed Computing Systems: Impact on Software Quality,
identifies the characteristics of distributed systems, provides an historical overview,
analyzes the reasons for selection of distributed systems, classifies design strategies,
provides a taxonomy of architecture topologies, presents scenarios, and analyzes
hardware/software/firmware tradeoffs.

1.4 SUMMARY OF ACCOMPLISHMENTS

The objective of this contract was to develop techniques to measure distributed system
quality with a perspective on both hardware and software from a life-cycle viewpoint.
The approach used in accomplishing this objective was to:

1) extend the factor/criteria/metric framework of McCall et.al. to distributed
computing systems;

2) define and validate new factors, criteria, and metrics to meet the unique
characteristics of such systems;

3) develop design guidelines and tradeoffs for choosing between quality factors;

4) incorporate techniques into a guidebook for implementation.

The original factor/criteria/metric framework of McCall et.al. is described in section 2.1.
The attributes of distributed systems, and their impact on the factor/criteria/metric
framework, are explored at length in Volume IIl. The transition from the original (McCall)
framework to the new framework is outlined in section 2.3, and the new factors, criteria,
and metrics are listed in section 2.2. Design guidelines and tradeoffs for choosing
between quality factors are given in section 3.1 of Volume Il. Volume Il is the guidebook
for implementation.

_\

..

rs

A

R . Y

h ')

G

"'ZE YLl N

.
a’a

b

AN
'.w.‘:\.. \1- ‘\.J

ey

cof e
\4‘. v

- , - v o
S0l i

2

NN P
Wy AN

s 31

s

KX NN,

L2

-
.}
‘54

" ap e
P AT O

2 &84

P,

oy
LA &
Jalall

’

AR B gl G g e .. P, ot (Ui G A R R SR L et e

1.%.1 Framework Changes
The following paragraphs summarize changes in the elements of the metric framework.

New and Modified Framework Elements

Two new quality factors were defined, survivability and expandability, and the quality
factor testability was changed to verifiability, a more general term. Five new criteria
were added to the framework, and eleven former criteria were modified and condensed
into seven criteria. Eleven new metrics and sixty-seven new metric elements were
defined.

The two new quality factors are defined as follows:

Survivability - probability that the software will continue to perform or support critical
functions when a portion of the system is inoperable; and

Expandability - effort to increase software capability or performance by enhancing
current functions or adding new functions/data.

Survivability is of considerable importance to distributed systems, but was legitimately
overlooked by McCall et.al. in their framework for uniprocessors. From a user standpoint,
a uniprocessor is either "up" (operational) or "down" (non-operational), whereas a
distributed system must be designed to cope with situations where a portion of the system
is inoperable. The criteria for survivability are autonomy, distributedness, anomaly
management, modularity, and reconfigurability.

Expandability, as a factor, recognizes the way in which computer systems grow during
their life-cycle. Also applicable to uniprocessors, Expandability measures the relative
ease with which this growth is possible. The criteria for expandability are virtuality,
generality, modularity, augmentability, specificity, and simplicity.

The details of the framework changes are presented in Section 2.2, Framework Enhance-
ments. The details of the new framework are presented in Section 3.0, Distributed

System Quality Metrics Framework.

W Wy ' o - U L Pl NS e SN bR PR A il RN . AL LA A AR N AN L RS

~-
\:_\ X
~ ‘.: N
& o
'»:.:: : :
:vj-'.- Framework Elements Proposed and Dropped >
%1% -
"N
One quality factor, evolvability, was dropped from the new framework because of its
B similarity to expandability. Six criteria were dropped from the new framework because of R
L)
g their similarity to other criteria or because of lack of metrics to support them. No v
R metrics were dropped, but twenty-six metric elements were proposed and dropped either N
' because of their overlap with other metric elements or because of their vagueness.
gt

The details of the framework elements which were proposed and dropped are presented in
Section 4.0, Transitional Study.

¢ o
L
5 .

Y
o

1.4.2 Design Guidelines and Tradeoff Analyses

AL)
L)

. - .
G

A '3

B s T

Poaygy

New design guidelines were added to support tradeoff analyses for the situations where .
requirements for high quality levels for two quality factors would conflict; i.e., where =

)

specifying a high quality level for one factor would naturally result in a low quality level g
for another factor. New guidelines were added for tradeoffs between survivability and
five other factors - efficiency, integrity, flexibility, portability, and reusability. New

guidelines were added for tradeoffs between expandability and three other factors -

NP reliability, efficiency, and integrity. New guidelines were also added for tradeoffs .-
3‘_\- between reliability and two other factors - efficiency and flexibility. e
s:;-; ot
o .
' The complete set of design guidelines for tradeoff analyses is presented in Section 3.1.1,
X Software Quality Factors. o
:3)
SO 4
N 1.4.3 Quality Metrics Guidebook -3
\‘.: The guidebook for quality metrics is Volume II of this report. It represents a substantial o
_ i update to the former handbook - Software Quality Measurement Manual, R
E) RADC-TR-80-109. The guidebook includes updates for distributed systems from this :
= contract and incorporates results from contract F30602-80-C-0265, Software Interopera- ;‘
s bility and Reusability. The metric worksheets and metric tables are now appendices to Ry
:: Volume 1I and are considerably revised, extended and reorganized for greater convenience :'
S of use and updating. The worksheets are now more paralle! in structure to ease the data 2
- gathering task. The metric tables are now organized alphabetically by criteria name. :
:l"; ‘.:
o v
-:" 1-11 d
&, -

s W Pt Bt G Tt e & T A Rt It A P A R N W N A TN I R TS S EE, g A RO fn Diaibiniut

1.8.4 Data Collection, Analyses, and Yalidation

Data was collected and analyzed for the two new quality factors - survivability and
expandability. Metric data and quality leve! rating estimates were gathered from four

3

5

g projects with distributed computing systems: UDACS (Universal Display and Control
\ System), E-3A (Airborne Warning and Control System), B-1 Avionics (for the B-1 bomber),
b

and MPRT (Morgantown Personal Rapid Transit System).

Correlations between quality ratings and metric values show a positive relationship and
therefore support the addition of the expandability and survivability quality factors. This
¢ result, and the fact the data collection and analysis methodology was used successfully,
also supports the applicability of the software metrics technology to distributed
4 computing systems. The details of this effort are presented in Section 5.0, Validation.

1.5 CONCLUSIONS

The work performed under this contract, the work performed under the Interoperability
and Reusability contract, and the work performed by other contractors are part of a
continuing technological trend. The need for more thorough measurement of software and
. system quality is being met by a more detailed and complete methodology. Distributed
embedded computer systems are more complex than uniprocessor systems, and the
N applicability of the factor/criterion/metric methodology to these systems is an accom-

]

plishment which supports the continued use of that methodology. Among other benefits,
this enables the tradeoffs between hardware, software, and firmware to be made more

s
" objectively than in the past; this may improve cost, schedule, and optimization. The basis
.4& of the methodology is to measure as many attributes of the system as are relevant, and to
¥ appropriately weight these measurements. This is a complex task, but is more realistic
and effective than to search for a small number of metrics which somehow describe the
entire system.
Ll
L]
]) -
* SN
,-,':_
N '~
5 1-12 o
t :\-_._1
r ,\’.‘.1
. - - . el . o
o g e T ", P AU 4 o Car T e S MR e S
\ : ,t._ A '_‘:'_‘.f_- :. :_._,...,' o AN SN - A ~ N SRR N -4
CA ..\"\’. - \‘\"-.. EIATIA WA \' " . . o ...~.A LU B
1YY 9N S ALY - AR RRRNICNNG - e
. e Dy SV LTS Yy DU I PR | . R

o -
nY4 ’.
8
0 N2
-“u '.!. s
K2l SECTION 2.0 7
v SOFTWARE QUALITY FRAMEWORK ENHANCEMENTS i
‘ This section identifies enhancements made to the original software quality framework.
h? The original framework was developed under previous RADC contracts (F30602-76-C-0417 ._
;5 . and F30602-78-C-0216) and was used as a baseline for expanding the framework to include b
- distributed systems. The following paragraphs highlight the initial framework, describe -
.‘; framework enhancements for distributed systems, and reference the research that led t-
::-: changes and additions to the framework. Section 3.0 describes the complete qualit,
\;‘ metrics framework which was developed for distributed systems. A complete description
N of the original quality framework can be found in RADC-TR-80-109.
R 3
2o 2.1 INITIAL FRAMEWORK o
3
This section identifies the framework which was developed under previous contracts and \
: used as a baseline for enhancements. The quality model and separate framework elements ’\
§' ‘ are discussed. ’
e
2.1.1 Quality Model "
N =~
‘ A simple model was developed for viewing software quality which is highly flexible. This f
‘ model was shown in Figure 1.1-1. A hierarchical relationship is shown between a quality o~
%) factor, quality criteria, and quality metrics. Quality factors are top-level views of
;5 quality and represent concerns of the acquisition manager or product user. Criteria are §
} software-oriented attributes. Criteria are a more detailed representation of what is :
% meant by quality and are technically oriented. A metric is a specific representation of i
what is meant by quality—more detailed than criteria. The presence or absence of a k
f particular metric in the software is a quantitative indication of the degree of quality ;:
:§ present. This model is flexible in that it indicates a general relationship between
categories. New factors, criteria, and metrics may be added without affecting the model. "

2.1.2 Framework Elements

N
[

i .
[} .

-1 G -:
vad The initial framework contained eleven quality factors, twenty-three quality criteria, and ;
, thirty-nine metrics. Table 2.1-1 identifies and defines the quality factors. The factors s
‘-z -

1% "

N 2-1

1) "l
v A

g—

P e e e
T T .

Y Cw - atyt. s w, v v e e I At At (Sl AU SCh S A N PRI DA A A A A AL A

N’
R :3:'.:
< ;
% o
b1} 2
- Table 2.1-1 Software Quality Factors .':;TZ:
CORRECTNESS Extent to which a program satisfies its specification e
f and fulfills the user's mission objectives. e
oS
i:- RELIABILITY Extent to which a program can be éxpected to o
o perform its intended function with required N
= precision. -
INITIAL 3
- PRODUCT EFFICIENCY The amount of computing resources and code :~.
R0 OPERATION required by a program to perform a function. \#
,,'.t ; INTEGRITY Extent to which access to software or data by ':'f_
» unauthorized persons can be controlled. e
R USABILITY Effort required to learn, operate, prepare input, .
g ? and interpret output of a program. -
53 UFE N
! CYCLE MAINTAINABILITY | Effort required to locate and fix an error in an it
STAGES operational program. bal
PRODUCT A
< REVISION | TESTABILITY Effort required to test a program to insure it o
performs its intended function. -
A FLEXIBILITY Effort required to modify an operational program. -
iy =
: PORTABILITY Effort required to transfer a program from one
', hardware configuration and/or software system to :.- Y
3 another. Nyt
B PRODUCT 3
3 TRANSITION]| REUSABILITY Extent to which a program can be used in other X
¥ applications - related to the packaging and scope of :
the functions that programs perform. o
o oy
; INTEROPERABILITY | Effort required to couple one system with another. X
: oo
. o
(] NOTE: This table represents the original framework developed under contract c:t
- F30602-78-C-0216 and was taken from RADC-TR-80-109, Volume|, L
. Page 1-8. e
g R
R :'.{':
! -
N R
Pa! ."-'.
(2-2 RSX
X =X

are divided into three life cycle stages, or activity categories: initial product operation,
product revision, and product transition. Each factor is most significant during a period

when one of the three categories of activities is being performed.

Figure 2.1-1 (taken from RADC-TR-80-109, Volume 1, pages 1-9 and 1-10) shows the
initial twenty-three quality criteria in relationship to the eleven quality factors. Note

that some criteria appear under more than one factor.

The initial thirty-nine metrics are identified in the next section (2.2) in Table 2.2-2 under

"former metrics". Each metric is defined by a number of metric elements, with

definitions for each metric element. This information was compiled into a set of metric
tables, an example of which is shown in Table 2.1-2. The complete list of tables is
contained in RADC-TR-80-109. The tables are used in conjunction with metric
worksheets for tabulating metric values. The tables are categorized by criteria and

subcriteria and indicate the applicable development phase(s) for each metric element.

2.2 FRAMEWORK ENHANCEMENTS

This section identifies the enhancements made to the baseline framework. New quality

factors, criteria, metrics, and metric elements were identified; some baseline framework

}:‘t}' elements were modified. The software life-cycle phases were expanded from three to

five. The worksheet categories were enhanced to accommodate the new and modified

framework elements. The complete quality metrics framework for distributed systems is

described in Section 3.0.

2.2.1 Quantitative Change Summary

Table 2.2-1 summarizes the quantitative changes to the baseline framework elements.
The third column (New) indicates that even though only two quality factors were added, a
considerable number of metric elements and worksheet references to those metric

elements were added. This is because the basis of change to the framework elements
stemmed from considering the effect of distributed systems on quality; this consideration

affected all framework elements.

" LRI | ‘.
AP P N,

A ;\ :'{'.‘(
Uaaee s

E—

.A-. Y, ~l.v.
AR Y,
LU

Y

Y A
'] ﬂt‘.l.

o4
L
v

s
+

L) l‘.. '-
L] ..l “l ‘. \

g
AR

-
a e

LA A

T S T T W Wb,

AT TN,

WTTR T V(T 6 B Ao LA

r Traceability 1 r Consistency I LCompletenessJ

RELIABILITY

[ErrorTolerancel r Consistency] | Accuracy j L siimplicity J

EFFICIENCY

rExecution Efficiency] [Storage Efficiency J

INTEGRITY LEGEND
(O ractor

| AccessControl | [Access Audit | [criteria

USABILITY

L Trainir:g] [ngmunicativeness] L Operability]

MAINTAINABILITY

rConsistench LSimplicit_y] IConciseness] LModularitﬂ lSelf—Descriptiveness]

Figure 2.1-1 Relationship of Criteria to Software Quality Factors

LAy}
.
"

~n
]
F-3
.
2 2 0

a - P O v - v
AT N AL NG S MMM R N A A L A R A AR et T

p

'.;,'*}-‘_.'
Al

o %
Pk

»
s

,ﬂ,

=1
L L
I

.4,"':

~*y 8y :?
AR

FLEXIBILITY

r Modularity] r GeneralityJ LEx;;iability] @f-

»
¢

T "r": ‘1' ‘l' 'l.‘ﬁl ':":

Descriptiveness

A 7
b e o
3 TESTABILITY By

— . -
P r Simplicity J I Modularity I Enstmmentati@ I?elf-bescriptivenesﬂ

'
[4
Ly Ay W e T s

N PORTABILITY

"' IModulariﬂ [Self-Descriptivéneg machinelndependencq Software System s
N-le independence RS

S0 A
A AS
o e
' REUSABILITY -
::::f I GeneralityJ modularity] Software System Machine [Self-Descriptiveness] '.::
'_ Independence | |Independence o
. s
3AY .
.. :‘-
I NTEROPERABILI N
. h_\
E Modularity [communications Commonality| [Data commonality | 2

g

T a, s ¢, 7,2 -
RN IAN:

1N LEGEND
. () Factor
N [] criteria

:j-;: Figure 2.1-1 Relationship of Criteria to Software Quality Factors (Continued) N :
o R
---.‘q &
\". \
" 7
LAY 2-5 .
'.:,-.
WA

R '.‘ : —' A - R U Ce e I L LY -
<. .- "“. P IR AR P .~' .' --' ., .. ‘.‘ . '-. ...

P ~ ,‘. T L . \. .t e BRI SRR A) - e .

; " - - - » - - . o N . " .

. .
. D R

B e W e A

At A et - u . o LIPS <O I T P P
oL acalaial A.(‘\.{L"s.'_:‘ A P T TN P P A R AR Y AT At et a e

2y

e S G el INTVADNLIN

6u “Buissadoad

NP PEXDIIYD SSBUSH|GRUOSEdS
w.-ﬁE-._-a ndino (1) (v)
‘Bunpey dusans (€)

"3%N 31049q pasI) abues umdwesed
xapul sejsuen 3diynw pue dool ()

‘shanie} jeuoneyndwod wouy A13a03a) @

10} WBWeINDe JO JWIWNIES BANIUBIP VY (L) $3NTIV4

JLSITDIHD SWNVA TVYNOULYLNIWNOD
TYNOLLYLNdWOD WOUS AYIAODIY - €13 FIIVHIANODON

o oY B S TRL INTVA LI

‘6uis®>0.d 01 Joud

ajqejeae s) RIED Jj@ O] UONRUILLAAQ (S)
‘suibaq

Buyss920.d 220504 yoayd st andu iy (v)
"PONIYI PUB PILJIIUSPI SUOHIEUIGWIOD

1e6a))1 pue sisanba. Bundiyuod (g)

PR pue pey1oeds sway
10} (ssausjqeuoseds) sanjea jo abuey (7)

‘wyep Indu O 35ULL|0) 0L
H 10} WBWRIINDYL JO JUBWINYIS FANIULIP Y (1)
JASIDIDIHD (L)
Viva LNdNI ¥3dONdWI WO¥S AN3IA0D3Y T viva LNdN!

0¥0 | o¥o ¢ 0¥0 !
INWA | onmaa | 3IMVA | onmsax | 3MVA | onsaa SRLIN NOW3LIDENS

MNOW3LIYD
NOILVINIWIT I NDIS30 SINIWIIINDIY
ALNISVN3Y (S)NOLOVS

sjdwex3 ojqeL 1IN 7-1°Z djqel

-

By
AR AR AL RN

I, A
R

d

'I.‘m .
A,

.
g

LY

\':‘:‘5‘ :
...
€ a e

OO

.
LN
»

L}
.
“SE

.-

0 2L,
s_e_ v B 2

l‘..‘

Table 2.2-1 Metric Table And Worksheet Changes
Proposed
Former Modified New Current |&Dropped
Metric Tables:
Factors 1" 1 2 +18%] 13 1
Criteria 23 11+7 5[+22%] 24 6
Metrics 3912 * 0 11[+ 28%] 5072 * 0
Metric Elements 154/26 * 9 67[+44%] | 221726 * 26
Worksheet References 20273 * 6 119 + 59%] 3213 * 0
Metric Worksheets:
Worksheet Categories 38 8 S{ + 13%] 43 . 2
Worksheet Entries 2413 * 10 132 + 55%] 37373 ** 0
* = Active/Deleted
** = 45 of 373 are multiple entries
2-7

Y
v

v

PR
pP PR :
i gl L g a4 e

A Sl Gl
DA N A

2 :
: z
_':f. I
= 2.2.2 Metric Categorization
_,'Q - :‘:
x The baseline framework used both criteria and subcriteria in the categorization of the '.
,:j, metrics. Table 2.2-2 shows the correlation between the baseline framework and the new ﬁf:':’_
“;;' framework. Subcriteria have been combined for simplicity. The criteria have also been ',;j:}
o, ..
e alphabetized. o
“ o
N r.
< 2.2.3 Life-Cycle Phases "
) N
?i The baseline life-cycle phases have been expanded from three to five. The baseline '.-f:'.‘

phases were requirements, design, and implementation. The new phases are requirements
analysis, preliminary design, detailed design, implementation, and test and integration.

N

il
e
[l

4 Design was divided into preliminary design and detailed design. This enabled a direct ':,
% correlation between worksheets and phases; each phase now has one worksheet. Work- S
i sheet 1 is used in requirements analysis; worksheet 2 is used in preliminary design; o
4'4. worksheet 3 is used in detailed design; worksheet & is used in implementation; and a subset ;E-_]:
‘;j: of worksheet 2 is used in test and integration. The specific subset is indicated in the ::;';
o metric tables of Appendix B of Volume II of this report. o

. frynd
' w: 2.2.% Worksheet Categories f::;'
3 R
4
1] The metric worksheet categories were revised as indicated in Table 2.2-3. New
"y categories were added to accommodate new metrics. Some category names were revised =
::j and the category sequences were reordered to ease the task of data acquisition. Wherever E:::
:2 possible, the same or similar metrics were grouped under the same category name and \
‘ " given the same category sub-number for each worksheet (e.g., structure - 1.1, 2.1, 3.1, ;:;:,
' and 4.1). There are five new categories indicated with an asterisk ("*") and eight bet
- category name changes indicated with a double asterisk ("*#*"), ‘:_Z;:'-
5 A
o o3
N Note that Table 2.2-3 reflects the structure which was used in the validation performed o3
j— under this contract. Several categories were added and changed when information from f
':E the Software Interoperability and Reusability contract F30602-80-C-0265 was integrated. \N
; : These changes are reflected in Appendix A of Volume II of this report. iZ::E

N N
2 o8
o =
5 25
3 2-8 O
:

i

.i) 4" 1‘.) V. .‘\u \.-%'
r;-.c.w- S ONLt

) ' *' o LS

SNV

-Pa'..

|

:
)
o

_....,
s 8 0

a2 _0 4
Py 3

‘l
LR)

P
.
y
.

o

.
PO

r

-) » BT T a T eV e T et e "m0 0 i R . it
Table 2.2-2 Criteria and Metric Changes
REVISED FORMER
CRITERIA/
CRITERIA METRIC SUSCRITERIA METRIC
ACCURACY AY.1 Accuracy Checklist ACCURACY AC.1 Accuracy Checklist
ANOMALY AM.1 Error Tolerance/Control Checklist | ERROR TOLERANCE/ACONTROL | ET.1 Error Tolerance/Control Checklist
MANAGEMENT
AM.2 improper input Data Checklist INPUT DATA ET.2 Recovery From improper input
Data Chacklist
AM.3 Computationai Falures Checkli RECOVERABLE ET.3 Recovery From Comuptaticnal
COMPUTATIONAL FAILURES Fadures Checkist
AM.& Hardware Faults Checklist RECOVERABLE HARDWARE ET.4 Recovery From Hardware Faults
FAULTS Checkhst
AM.S Dewvice Errors Checklist DEVICE STATUS CONDITIONS ET.S Recovery From Device Errors
Checklist
AUGMENTABILITY AG.! Data Storage Expansion Messure | EXPANDABILITY/DATA EX.1 Data Storage Expansion Measure
STORAGE EXPANSION
AG.2 Computation Extensibility COMPUTATION EXTENSIBILITY [EX.2 Extensibiirty Measure
Measure
COMMONALITY [« W8 I « ions C lity COMMUNICATIONS CC.1 Communications Commonality
Checkiist COMMONALITY Checklist
CL.2 Data Commonality Checklist DATA COMMONALITY OC.1 Oata Cominonality Checklist
COMMUNICATIVENESS CM.1 User input Interface Measure COMMUNICATIVENESS/USER CM.1 User Input Interface Measure
INPUT INTERFACE
CM.2 User Output interface Measure USER OUTPUTINTERFACE CM.2 User Output Interface Measure
COMPLETENESS CP.1 Compieteness Checklist COMPLETENESS CP.1 Completeness Checklist
CONCISENESS CO.1 Halstead's Measure CONCISENESS CO.1 Haistead's Measure
CONSISTENCY CS.1 Procedure C y M e CONSISTENCY/PROCEDURE CS.1 Procedure Consistency Measure
CONSISTENCY
C5.2 Data Consistency Measure DATA CONSISTENCY CS.2 Data Consistency Meausre
EFFECTIVENESS EF.1 Performance Requirements EXECUTION EE.1 Performance Requiremeots
EFFICIENCY/REQUIREMENTS identified and allocated to Design
EF.2 Iterative Processing Efficiency ITERATIVE PROCESSING EE.2 Iterative Processing Efficiency
Measure Measure
EF.3 Data Usage Efficiency Measure DATA USAGE EE.3 Data Usage Efficiency Measure
£F.4 Storage Efficiency Measure STORAGE EFFICIENCY SE.1 Storage Efficiency Measure
GENERALITY GE.1 Module References by Other GENERALITY REFERENCES GE.1 Extentto Which Module 1s
Modules Referenced by Other Modules
GE.2 Implementation for Generality IMPLEMENTATION GE.2 implementation for Generality
Checklist GENERALITY Checkhst
INDEPENDENCE 0.1 Software System independence SOFTWARE SYSTEM $S.1 Software System Independence
Measure INDEPENDENCE Measure
10.2 Maching independence Measure MACHINE INDEPENDENCE MI1 Machine Indeperdence Measure

WA

.

e]
l.l.

r_s "0 s

"" T

Y IR

N R
ay

Ay

L
.

ot 1%

TN

a0,
vy PO ALs

' M
'

'I“ l.‘.

- rt s v -..4
-!' (AR N
R I e) ce?

rw v

P
PRRA]
"'.i
e
? -

.

".I
2.2

4'.".'.-
A Fa LRI

A

v d

.

P s A S

L

- A

o a

SANS LA

4
.A

AR

Loy pae
IR

-

{

"n ANV NN

EAIE IS

AT N A SN PO g

Table 2.2-2 Criteria and Metric Changes (Continued)

ot

e

A

REVISED FORMER
CRITERIA/
CRITERIA METRIC SUSCRITERIA METRIC
MODULANITY OELETED MOODULARITY/DEGREE OF MO.1 Stabiity Measure
INDEPENDENCE
MO.2 Modular implementation MODULAR WPLEMENTATION | MO.2 Modulsr Implementation
Measure Measure
OPERABILITY OP.1 Operability Checklist OPERABILITY OP.1 Operability Checkiist
SELF-DESCRIPTIVENESS $D.1 Quantity of Comments SELF-DESCRIPTIVENESS/ $SD.1 Quantity of Comments
QUANTITY OF COMMENTS
$D.2 Effectiveness of Comments EFFECTIVENESS OF COMMENTS | SD.2 Effectiveness of Comments
Measure Measure
$D.3 Descripts s of Languag: DESCRIPTIVENESS OF $O.3 Descriptiveness of
Measure IMPLEMENTATION LANGUAGE impl ion Languag
Measure
SIMPLICITY SI.1 Design Structure Messure SIMPLICITYDESIGN $1.1 Design Structure Measure
STRUCTURE
$i.2 Structured Language or STRUCTURE PROGRAMMING $I.2 Use of Structure Language or
Preprocessor Preprocessor
$1.3 Data and Control Flow Complexity | DATA AND CONTROL FLOW $1.3 Complexity Measure
Measure COMPLEXITY
$i.4 Cading Simplicity Measure CODE SIMPLICITY SL.4 Measure of Coding Simphcity
SYSTEM ACCESSIBILITY SA.1 Access Control Checklist ACCESS CONTROL AC.1 Access Control Checklist
SA.2 Access Audit Checkiist ACCESS AUDIT AA.1 Access Audit Checklist
TRACEABILITY TR.1 Cross Retference TRACEABILITY TR.1 Cross Reference Relating Modules
to Requirement
TRAINING TN.1 Training Checklist TRAINING TN.1 Training Checklist
VISIBILITY VS.1 Module Testing Measure INSTRUMENTATION/MODULE | IN.1 Module Testing Measure
TESTING SUPPORT
vs.2 gration Testing M INTEGRATION TESTING IN.2 Integration Testing Measure
SUPPORT
V$.3 System Testing Measure SYSTEM TESTING SUPPORT IN.3 System Testing Measure
2-10

o, V-.'- OV R oA
LR s s'('\ foe

R

‘Od ‘X3 °IA VW 'AS) s0uBIes SY (A)
1'0d

{ww) novemnuo) vy ()
v43°€43°T43

(43} ssuonenwndo €y (MA)
WYL NY

(AS'TN) s®vesn0L T (WA)
VIS'ETIS VIS TON
{x3°'01°me

‘Od ‘X4 VW AS ‘W) empnas 1y (1)

AT TNCOWIC0D INNOS ¥

'Od ‘X4 °IA ‘'YW 'AS} seudimgey SE (A}

N THE >
{0)) seumadwoy v (1)
€43°743°143
(13} vonenumdo ¢ (A
LNV
‘sONY EWV TNV LNV LAY
{AS' W)} s 0vesm0) 2€E (W)
SEON’S1'dS e 1 1A YIS EIS LIS
{x3°'a0'NY ‘04
‘X4 °INWINCAS 0D} empnas LE (m)

TIAT INCOWNDISIT Q3 IVLIA €

{ot}hundes sz (A

vdd'iul
{0d) ssumsmdwod ¥z (1)
¥43'€43°T 43
{43} voneziundo €z (A)
L'WY
SNV SNV VNV LWV LAY
{AS'TW) se®umimoL 27 (1)
SEON'SL¥A 'SLIT°LIS
{x3°d1'ny"0d "x4
‘IA YW AS SN DT M} smdnag 1 (i)

TIATTWIALSAYNDISIA AVVNINN NG

G oa e,....... for 0 N DAY S 3 ; PO A 1.7, 4 l A c MG MR IMOMOMOMMNOE O
RATYS I SIEEIRRACRE B ROCRRLY e SR RARIRY | (YSNNMNGL| Wil - ASNUENY| | v dons. | SOOI SRSERIERY S eOR
3
g
il
r.
b,
'-
3l
&
n.
v-
)
¥ AWayds BULIBQWINN 13Wi04 = () ‘PIYIPON = .4 'MIN = ,
L
o
'-
. VUIWWO) $,0008d5u1 ZL'Y (11X)
y
(-. NV
e ‘WI3'CI OV TOV LAY
.- {%3°%3°AS
A ‘43) wowsnteen qweukg LIy (X) NUsWWO) S0V LL'Z ()
4 TOIVa ESATSALSA
[/ {nu°0d) . 92uspuadapui oLy (X)) AWswwo) soadtu o1’ (i) {3n ww’sn} BunsaL 012 (A NUIWWO) 3,5003dsu1 01’1 (HA)
TV
b {xa TWI I'WDI'NL L 'dO TWILWD'L'dO
! ‘X4 IA YW 43 W0d)} Mieq 6% (IA) uonezuobne) jruonduny ¢ (IA) {sn) depnuiuewny 62 (IA) {sn} epmuivewny ¢t (A1)
€as°2qQs’1'as WS sl ¥A WL 1A st Y LIS oZS sl UA 11O W'Y
{ny'od 7918 {x3°'ny°x3'3A {x3'ww
"X4°IA ‘W) seusandurtag-jies Oy (i) {ww ‘14°03) Hounsisuod g'g (NA) Y 'AS SN ‘DI '0)) sseg e 97 () ‘AS'SN 'O 'O}, g @ieg B L (4)
JSNVINYTO N IV STV NV T LD 1 WTNY 1 NV T LD H
{Nu°0d ‘AS W} IvInOnndu Ly (A) {AS) SOIRpPRIV WOBSAS 1€ (,) {d1°As) sooepunuwaishs 22 (IA) {ar'As) sorparn warshs 21 (A 1
o
TI9TOV IOV T39OV 'TOV IOV 13D eV OV 'sE OV TOV LDV WOV EOV'TOV I OV
(33N "%t3) s Aumqeebunyy 9y (X) {%3°Nu "4} sohapqesbueyy 9¢ (A {x3°'NY x4} JLunquabueyd 97 (o) {x3°x4} JAupqeabueyd 91 (,)
1aTon TOW'TAI'1al
0 am {x3°d1°'ny TVS'LVS TVSLVS

{o}hwndes s1 ()

1¥L°Vd)
{od) sssummdwod v1 (1)
143
{43)oveusoped €1 (N
LY LNV
'SINV ‘YINY ‘EINV TV LAY
{(AS W) sadu®sn0) 21 [(})
SLEONPISLLITLIS
{x3 ¢ '™"0¢
R IAVNCAS WL ommpaag (L (o)

MIATINILSAT/SISATVNY SININIWNON

Arewwing S300YsYIOM 0N €-Z'T 9qel

AR PR o e AR AT R TP e R SN | TR AARTA TN T e
NG, DN XORXX] SRR RN 2 MNIRE N | SO AOIIINEY| | SR

(P77

<] o
..:s~‘ '

.,

]
PP P X

oy fy

) A
. S W)

“l"

AL

-

AN %4

A XX

-4..
I NN

[P

I 4

A
.
]
~'
U
)

s " n 2 g e B A Jen Jeachan SAu) e Sarh ALRACRaL S DA S RL B A F AR A AR A LI S ST R A

The acronyms used in Table 2.2-3 for the quality factors are as follows:

CO - Correctness
RL - Reliability

EF - Efficiency

IG - Integrity

US - Usability

SV - Survivability
MA - Maintainability
VE - Verificability
FX - Flexibility

PO - Portability

RU - Reusability

IP - Interoperability
EX - Expandability

2.3 TRANSITION TO NEW FRAMEWORK: SUMMARY OF VOLUME I

Volume 1II of this report is titled "Distributed Computing Systems: Impact on Software
Quality". What follows is a summary of the contents of that volume, presented in the
context of the transition from the old quality metrics framework to the new framework.

Distributed Computer Systems have been variously defined, and these definitions are
compared. An historical overview is provided, as well as the relationship to the current
DoD software initiative.

Over 50 rationales are given for the selection of a distributed system rather than a
uniprocessor system. These rationales are grouped into 9 reasons, where each reason is a
high-level system acquisition goal. A matrix relates these rationales and reasons to those
quality factors most impacted. Within each reason there are tradeoffs, and tables
illustrate the tradeoffs.

There are three areas which must be addressed in the design of a distributed system.

These areas are: the distribution of control and processing, the structure and distribution
of the data base, and the strategy for communication among the elements of the system.

2-12

o« e
‘- a A

Y

XX

.
v e
o'

FONRI At

PARY

Rl

Pt

el
SN

PR A
A

AT i

v <
- v“‘

r'e

P A
AAALLYN

"“".f:'."l
s st

L VLA

a4 Mt r a2 A AP N g el gt it gl AARCAR SR LA G A A SRR A N ST LT Gl O RN A O Tl A

Successful design strategies in each area are outlined, with an emphasis on quality
factors.

Distributed system topology is a terin referring to the physical or logical pattern of
interconnection of system components. Aspects of distributed system topology discussed
in Volume III include:

* topology impact - how and why topology is related to system quality factors

* communications strategies - differing approaches to routing messages between
nodes

* distributed system layers - the ISO Reference Model for interprocessor
communication protocols

* distributed system architecture classification - what topologically different
designs are possible, and their relative advantages

* distributed system hardware architecture (topology) impact on system quality

* distributed system hardware (topology) impact on software quality

Fourteen particular topologies are illustrated, from the familiar (ioop, ring, bus) to the
more exotic (cube-connected cycles, binary hypercube, shuffle-exchange).

A number of scenarios were developed that collectively cover many of the major system
and software quality allocation issues that arise in distributed systems. Scenarios inciude:
distributed command and control, distributed communications, distributed database,
distributed avionics, distributed functional testing, distributed space systems, distributed

virtual topology, distributed optoelectronics, and distributed microcircuit multiprocessor.

A tentative classification is introduced for the decisions available to software, hardware,
and system acquisition managers. The concept of a distributed system life cycle is
outlined.

A number of firmware issues are explored. These include the difficulties of procurement,
an example of Ada implementation, and the quality factors involved in hardware/
firmware/software tradeoffs. A classification is introduced which emphasizes nardware/
firmware/software tradeoff opportunities in memory management, operational manage-
ment, 1/O management, error monitoring, and special algorithmic capabilities.

2-13

<.‘." \.-.._ ,‘\.' e e
BRI APV I I A

- - " e >.- . ’ MY
AR AR
(AL y AT PR

e eS

(]
..

& N 5, 8 0, WT

- "
(A '

vy

A % e
7,

s

oy
(4

« 8
.
A

'..'*v‘ ‘e &

e

~: .‘..{'..’v : —‘-.

B [‘x' 'n..),{.

(A

L .'. o

[’-‘/'-,'.;.' ..

I‘l
20
NS ¢

-

A% % .:.' | "- & f'c‘

.
.

A

A

[, 4

S oA

-

Ok T lh

ey

Pl . - o - a .
LA, s .".-':'.o 7]

’ ’.’.""l ";.L

s

L 'l:’"" -

',
PR Y

AR A O ! PRI A I R S T S e L I P LI N N

Efficiency, virtuality, adaptation, performance, and reliability are discussed in terms of
direct and indirect effects of hardware architecture on system quality. Quality factor
emphasis and methodology as a whole are discussed, as well as qualitative relationships
between correctness and reliability.

Collectively, these qualitative studies of distributed computing systems and their impacts
on quality raised a number of issues which were not considered in the previous
(uniprocessor) framework. New factors, criteria, and metrics were developed in order to
quantitatively assess these issues. There is not a one-to-one mapping between the
discussions and scenarios in Volume III and the new factors, criteria, and metrics. Instead,
the material in Volume III illustrates the learning process of researchers in this contract
which enabled the quality metrics framework to be extended to the more complex domain

of distributed computing systems.

.

..
‘.
o
'l " EA

4

.

...

,"",.‘, :
4’

AR 2

RS 3 e o

RPN

.

d

o
'R
g dg A ALl gy

I P
v

.

.
»

o Pl
o e T
> e

-

P g
P,

.

3.0
DISTRIBUTED SYSTEM QUALITY METRICS FRAMEWORK

The goal of the quality metrics concept is to enable a software acquisition manager to
specify the types and degrees of software qualities desired in the end product and to
predict and measure the degree of presence of those qualities during the development
process. Previous work (see Section 2.0) has established a model for viewing software
quality. Figure 3.0-1 is a s'mple depiction of this model, showing an hierarchical
relationship between a quality factor, quality criteria, and quality metrics. Quality
factors (e.g., usability, correctness, maintainability) are user-oriented terms representing
concerns of the acquisition manager or product user. Quality factors are used to specify
the type of quality desired. Criteria are software-oriented terms representing attributes
of the software which, if present in the software, indicate the presence of a type of
quality (a quality factor). Operability, communicativeness, and visibility are criteria for
the quality factor usability. Metrics are software-oriented phrases or sentences which ask
questions concerning details of an attribute (criterion) of the software. Answers to the
questions enable quantification of the degree of presence of criteria and, hence, factors.
"All error conditions and responses appropriately described to operator" is an example
from the metric checklist for the criteria operability.

The desired quality factors are normally specified by the acquisition manager and
provided as part of the requirements (along with operation, performance, and design
requirements). This enables the corresponding criteria and metrics to be identified and
used to predict the degree of presence of the desired qualities at key review points during
the development process.

Part of the purpose of this contract was to determine suitable quality metrics that will
directly apply to software on distributed systems. Previous work has established factors,
criteria, and metrics applicable to uniprocessor systems. An investigation of user
concerns and software characteristics for distributed systems shows that the previously
established factors and criteria are equally applicable to distributed systems. The
investigation also resulted in identification of new quality factors, criteria, and metrics
that are unique to distributed systems. The following paragraphs describe the full set of
quality factors, criteria, and metrics; new factors, criteria, and metrics are identified
with an asterisk. A complete description of the metrics framework and the use of the

metrics technology appears in the handbook—Volume II of this report.

! USER-ORIENTED VIEW OF
5 FACTOR PRODUCT QUALITY

eoadigy
)".'.'4":‘ PA

”
"

"
L

, SOFTWARE-ORIENTED
: (CRITERION)(CRITERION)(CRITERION ATTRIBUTES WHICH
INDICATE QUALITY

>~

- L) ¢
JRTA)

y METRIC METRIC METRIC QUANTITATIVE MEASURES
2N OF ATTRIBUTES

.. Figure 3.0-1 Software Quality Model

, 4 4 8
o, D

4

3-2

vy

° 1

PU AP RTE S VREIILUNE PRLIE SR A SRR DN

AR
o l"{‘:"

g
(Shi SR IR N
o e T,

’A
»

b

,
.-
.
Cd
Cal
o

3.1 SOFTWARE QUALITY FRAMEWORK

This section describes the distributed systems software quality framework, including
factors, criteria, metrics, tables, and worksheets. Two new factors, five new criteria, and

eleven new metrics were added to the software quality framework.

3.1.1 Software Quality Factors

Previous analysis and evaluation of quality factors resulted in grouping quality factors
into three categories: product operation, product revision, and product transition. This
scheme emphasizes the user's view of software life cycle management, and, in addition, it
includes conversion or reapplication of the software. Table 3.1-1 illustrates this scheme.
The questions indicate the relevancy of the factors to a user. Table 3.1-2 provides
definitions for all of the quality factors. Two new quality factors were identified and one
factor was revised as discussed below:

Product Operation

The quality factor survivability was added to the category of product operation.
Because components in a distributed system are physically separated, it is not
uncommon for large portions of a system to remain operative when a single unit
fails. For command, control and communications applications, users are concerned
that critical functions continue to be supported by the system even when a portion

of the system is inoperable.

Product Revision

The quality factor testability was changed to verifiability, a more general term.
Testing is one method of verification. Other methods include analysis, inspection,
and demonstration. In systems where reliability is critical, testing is often
augmented by analysis and inspection.

Product Transition

The quality factor expandability was added to the category of product transition.

3-3

NS

% e A
s
[

I

V. S .l'

"\ LR - - Bl e N A AR . d il] o e R Peialit A A <. '
e Ty
bt -
v -

e -

o T

‘ [N
'.." -..

e o)
«-\ Table 3.1-1 Quality Life-Cycle Scheme o

'Y . e

1) L] C.

Activity User Concern Quality Factor ”

N DOES IT DO WHAT IT'S SUPPOSED
«-:'.: TO? CORRECTNESS .
\ - i .
o WHAT CONFIDENCE CAN BE

PLACED IN WHAT IT DOES? RELIABILITY 3

2 PRODUCT HOW WELL DOES IT UTILIZE N

e OPERATION THE RESOURCES? EFFICIENCY 3

W)

Aol HOW SECURE IS IT? INTEGRITY 3
) HOW EASY IS IT TO USE? USABILITY -

e, .
" HOW WELL WILL IT PERFORM -

N UNDER ADVERSE CONDITIONS? SURVIVABILITY* -

X CAN IT BE REPAIRED? MAINTAINABILITY -

\ v
% PRODUCT CAN ITS OPERATION AND =
= REVISION PERFORMANCE BE VERIFIED? VERIFIABILITY* S
AN CAN IT BE CHANGED? FLEXIBILITY b
> CAN IT BE USED IN ANOTHER =
ENVIRONMENT? PORTABILITY
e CAN IT BE USED IN ANOTHER =
v APPLICATION? REUSABILITY o
= PRODUCT -

' TRANSITION CAN IT BE INTERFACED WITH 2
ANOTHER SYSTEM? INTEROPERABILITY

o CAN ITS CAPABILITY OR N
o PERFORMANCE BE EXPANDED N2
% OR UPGRADED? EXPANDABILITY* N
.‘\: ‘n'.
‘. * = NEW OR MODIFIED "

3 'T' l:j*
Y.
e ,'.:

1. :

» AS
.:: o
.'.1 3'4 :-"‘

:‘0 "n:

£ -
~° =

e R T e e ~ v - RSN

, RS

- FCRA NGRS e i - e M SRS C e I i S S A AN

Table 3.1-2 Software Quality Factor Definitions

Activity Quality Factor Definition

CORRECTNESS EXTENT TO WHICH THE SOFTWARE
SATISFIES ITS SPECIFICATIONS AND FULFILLS
THE USER'S MISSION OBJECTIVES

RELIABILITY PROBABILITY THAT THE SOFTWARE WILL
PERFORM TS LOGICAL OPERATIONS IN THE
2:?&}:%0 ENVIRONMENT WITHOUT

EFFICIENCY DEGREE OF UTILIZATION OF RESQURCES
{PROCESSING TIME, STORAGE, COMMU-
NICATION TIME) IN PERFORMING
FUNCTIONS

OPERATION | INTEGRITY EXTENT TO WHICH UNAUTHORIZED ACCESS
TO THE SOFTWARE OR DATA CAN BE

CONTROLLED
USABILITY EFFORT FOR TRAINING AND SOFTWARE

OPERATION - FAMILIARIZATION, INPUT
PREPARATION, EXECUTION, OUTPUT
INTERPRETATION

SURVIVABILITY* PROBABILITY THAT THE SOFTWARE WILL
CONTINUE TO PERFORM OR SUPPORT
CRITICAL FUNCTIONS WHEN A PORTION OF
THE SYSTEM IS INOPERABLE

MAINTAINABILITY AVERAGE EFFORT TO LOCATE AND FiX A
SOFTWARE FAILURE

VERIFIABILITY* EFFORT TO VERIFY THE SPECIFIED SOFT-
REVISION WARE OPERATION AND PERFORMANCE
FLEXIBILITY EFFORT TO EXTEND THE SOFTWARE

MISSIONS, FUNCTIONS, OR DATA TO
SATISFY OTHER REQUIREMENTS

PORTABILITY EFFORT TO CONVERT THE SOFTWARE FOR
USE IN ANOTHER OPERATING ENVIRON-
MENT (HARDWARE CONFIGURATION,
SOFTWARE SYSTEM ENVIRONMENT)

REUSABILITY EFFORT TO CONVERT A SOFTWARE
COMPONENT FOR USE IN ANOTHER
APPLICATION

T
TRANSITION | |\ TEROPERABILITY | EFFORT TO COUPLE THE SOFTWARE OF ONE

SYSTEM TO THE SOFTWARE OR ANOTHER
SYSTEM

EXPANDABILITY* EFFORT TO INCREASE SOFTWARE
CAPABILITY OR PERFORMANCE BY
ENHANCING CURRENT FUNCTIONS OR
ADDING NEW FUNCTIONS/DATA

* = NEW ORMODIFIED

e e . LT e et S e e e RN MR A
. . - . . PR . LU I . - . . . - et . .. -
. . " PRI R IS A . e A e e R A T S T N ..

i) ") : o-'~' '.'-'.- . . ® . e’ . v -.! .h]

-_‘-q.'.-_‘ PR .
AT s PR IS et
RS A.&:ﬁt\;‘p_ A a et a et AN a

e
: Distributed systems often evolve in size and capability over time, and older nodes
e and components often require an upgrade in capability and/or performance. This
— quality factor addresses the user's concern for the high cost of developing new %
\‘_: systems through emphasizing the extension of the life cycle of a system. j':':h
AN 3.1.1.1 Relationship of Quality Factors to Life-Cycle Phases '
e Software quality affects all phases of the software life cycle. Quality factor require-
ments are specified during the concept formulation phase, and quality ratings are
! f".:i estimated and predicted during the development phases. The effect of the presence or
A absence of a particular quality factor is realized during the evaluation phase and during
:'.j:-l: the post-development phases after the product has been turned over to the user. Table
*'\ 3.1-3 indicates the development phases where quality levels are determined for each
'.'_:Z' quality factor and indicates the evaluation and post-development phases where the effect
e of each quality factor is realized. Previous work had identified three development phases
f{ where quality levels are determined. This has been expanded to five development phases:
‘:.:l;'_ Requirements Analysis, Preliminary Design, Detailed Design, Implementation, and Test
'.;‘\ and Integration.
Z:‘_:.:f The degree of impact of poor quality determines the cost savings that can be expected if
\3 a higher quality product is developed through the application of metrics. This potential
- cost savings is reduced by the additional costs to apply the metrics and to develop the
- : higher quality product. The expected-cost-saved/cost-to-provide ratio for each quality
';.-:;: factor is rated as high, medium, or low in the right hand column of Table 3.1-3.
2
o 3.1.1.2 Relationships Between Software Quality Factors
Specifying more than one type of quality for a product can affect cost in a nonlinear
fashion. Relationships exist between quality factors--some are complementary while
others conflict. The impact of conflicting factors is that the cost-to-provide increases.
;! Table 3.1-4 shows the effect of a high degree of quality for one factor upon each of the
other factors. For example, reliability and correctness are complementary. If a high
;_:’_f:'-j degree of reliability is present, a high degree of correctness would also be expected; and

vice versa. Efficiency and reliability conflict. If a high degree of efficiency is present, a

.L low degree of reliability would be expected; and vice versa. Table 3.1-5 is a summary of

B e

AN,w...... .\..\........... \..-

f .\ -h h- L]
[O

m . .: .-.-..- w M“ -..\. o -«-u_

5
LI B e
» e

i A

P31IPOW 10 MAN »

paziub03ay s1 Axjend) 1004 J0 edw| UBYM = X ‘PaIP3id pue painseap st Aljend uaym = 7 puaban

wnipsiy X < < < < < »Aujiqepuedxy

wnipsw X X < < <7 < < Aiqesadoaatu)

wnipsy X \v4 < \"4 < 7 Aupqesnay

wnipsy X < v d < 7 Aupgeuiod

wnips X X <7 \v4 < < < Aupraixa) 4

Y614 X X X <7 <7 < < < SAunqeyap

ybin X X < < < < < Apqeuieiuey

Mo X X 4 \v4 <7 7 < <7 «Autigeaning

wnipay X X X \vd A v <7 Aungesn

Mo X < < < fubaw

hied X 7 4 < < < fouaniy3

ybiy X X X < < < <7 < Aupqgenay

ubiH X X X 7 7 < A% 7 $53UBLI0)

.M...-.ﬂoouw.v”“ nsu; g iBau; | vonewaw | ubisaq ubisac siskjeuy ‘s siopey
4503 pepedxy | vormsuesl | uoisiaey | uonersdo | sapwess | BasaL -eidw ag | wydd | siwbay o_u>~uc.uz._

Jjeueg WawdojenaQg-1504 1eA3 wawdojarag
saseyd appAd-aj1 03 s101dey Ayjend jo diysuone|ay €-1°€ 3jqel
e R R AR S| BT WEEREEE) |

L R
LA

3-7

EXPANDABIL!T.Y

\INTEROPERABILITY

Ewownwga—J— >

a0Er-dqdo— 2 — >

wowX—m—I—+ >

4

&
DWE e e O — - >

= NEW OR MODIFIED

. SA-—Zrq—-—Zq<a— -+ >

o
&
g
3
|
2
s
(=4
S
g
%
i

G
:
E

IF A HIGH DEGREE OF QUALITY
IS PRESENT FOR ONE FACTOR,

A 2 HIGH

A s LOW

BLANK = NONE OR DEPENDENT UPON

APPLICATION

LEGEND:

SURVIVABILITW.

oSBndm— I — >

- 2w — >

F's
A

W =—=U=—w2Ud>

W= D= =

aN AN

aAlalalallo

JaN PaN

AlalalAla
AlAalalalalAalalls

voEaewlUiF2Zunwn

Table 3.1-4 Relationships Between Software Quality Factors

MAINTAINABILITY

CORRECTNESS
VERIFIABILITY*
FLEXIBILITY

RELIABILITY

——

EFFICIENCY
INTEGRITY
USABILITY
SURVIVABILITY*

e ——

PORTABILITY

REUSABILITY

Alalalalala

o
Alalajala
3-8

A

AlAalalAlllAallla]lAals
D

INTEROPERABILITY

EXPANDABILITY*

.
AR A AR
d S

ot
g
Y
v \': "':.
. >
) .
‘,"-\). -4
~ =
\3 _f.'
- v
I"-: o
Ay Table 3.1-5 Relationships Between Software Use and Quality Factors j
'; \ -
S o
[
-
- USAGE CATEGORY ~
-2 OPERATION REVISION TRANSITION -
N aurvl CIR[e] v Juls [mlv elre]r]i]e L
?,t‘c,t',,s ole|F|nN|slujale |L|O]|E]|N]|xX -
N R{t]FrlTlalr IR JE|R]JU]T]|P o
Rii1Jr]eElefv [N] x|1T]|s]|E]a e
% els|lcla| i |T|F |1 lala|lr]N e
e clitir|RjL]|v |a]r |8}B]B|O|D N
o Tielelr|v]alrvjali|rji]ela K
od N]JiI]N]|]T]T]|B |N|B LiL|L|E]|s o
elT|c|y|Y]D |a] vl R e
o s|y|y L et |[T]TlT|Aa]L -
N S |] \ARARESE R o
N T LT (L o
- velo |y L{ye o
2 USAGE T I S
% CATEGORY Y T o~
‘ Y .\
! OPERATION | A lalalalalajlalajlajlajlalala desi
oL] Tt
:\.Q REVISION alalalalalalalalalalajala o
< mansmoN [Alalalalalalalalalalalala hat
A
LEGEND:
A IF A HIGH DEGREE OF QUALITY IS PRESENT FOR ONE FACTOR, THE DEGREE -
:-_f OF QUALITY EXPECTED FOR OTHER FACTORS OF A USAGE CATEGORY IS:
o -
P4 A 2 HIGH e
7 A - OW N
: * = NEW OR DF MODIFIED
."_. :
7
-’: :.
3 N
!‘ ~
. ,i =
> -7
-:{1 :::
”y

A ey !

RN
e

"y

K

e a?.t
e’ .
A o)
RN

[J".l#l

e
(A_ [N Y

o
[

&
<

AN

(3
.t

Gl

MEAAE

OO

N
L

vt
a s
y v

o .
D S i
LI]

LRy

a
‘.‘

gh P\‘

LA

Table 3.1-4 and indicates the effect of each quality factor on the usage categories
(operation, revision, and transition). In general, the operation quality factors conflict
among themselves and conflict with the revision and transition quality factors; the
revision and transition factors do not conflict among themselves and are usually
synergistic. Table 3.1-6 provides a brief discussion of typical tradeoffs for conflicting
factors. The first entry explains the conflict between reliability and efficiency which was

noted in the example above for Table 3.1-4.
3.1.13 Software Quality Ratings

Quality ratings have been developed for eight of the thirteen quality factors. Table 3.1-7
shows the formulas which have been developed and an explanation of the terms. These
ratings are used in conjunction with a set of guidelines for specifying the quality level
required for a quality factor. Two new ratings were developed under this contract—the
ratings for survivability and expandability.

3.1.2 Software Quality Criteria

Previous analysis and evaluation had resulted in identification of twenty three quality
criteria. The investigation of software characteristics for distributed systems showed
that these criteria were also applicable to distributed systems. This investigation resulted
in the identification of a total of twenty-four quality criteria. Twelve criteria are new;
eleven of the previous criteria were revised and combined into seven criteria as discussed
below.

Figure 3.1-1 shows the criteria which are associated with each of the thirteen quality
factors. This figure is in the format of the software quality model which was depicted in
Figure 3.0-1. Table 3.1-8 also shows the criteria associated with each of the thirteen
quality factors; in addition, it indicates which relat’ 1ships had been established by
previous analysis and evaluation (with an "x"), which relationships are new (with an " [x] "),
and which criteria and factors are new (with an "*") or different (with an "**"). Table
3.1-9 provides definitions for each of the quality criteria and lists the related factors.
The criteria in the tables are listed in alphabetical order.

3-10

s B e, g

I H

M o
R 4' l‘ P * .

. . [

R .
'n‘{ 0, ¢
s 0 T

FESPRLN Mg
. »

£ o

\’/-fl ""l," N

rete Sy s

'O.ll

N

s

NN

e
LN

At

3 ‘l ‘.b ‘ﬁ ’

P s

DAYl ¢

Table 3.1-6 Typical Factor Tradeoffs

CFFICIENCY | THE ADOITIONAL CODE REQUIRED TO PROVIDE ACCURACY AND
TO PERFORM ANOMALY MANAGEMENT USUALLY INCREASES RUN
TIME AND REQUIRES ADDITIONAL STORAGE.
RELIABRITY
vs FLEXSWTY | THE GENERALITY REQUIRED FOR FLEXIBLE, REUSABLE, AND
REUSASIITY | EXPANDABLE SOFTWARE USUALLY INCREASES THE DIFFICULTY OF
EXPANDABIITY | PROVIDING ACCURACY AND PERFORMING ANOMALY
MANAGEMENT FOR SPECIFIC CASES.
TEG THE ADDITIONAL CODE AND PROCESSING REQUIRED TO CONTROL
RITY | ACCESS TO CODE OR DATA USUALLY LENGTHENS RUN TIME AND
REQUIRES ADDITIONAL STORAGE.
Usasiury | THE ADOITIONAL CODE AND PROCESSING REQUIRED TO EASE AN
OPERATOR'S TASK OR TO PROVIDE MORE USABLE OUTPUT
USUALLY INCREASE RUNTIME AND REQUIRE ADDITIONAL
STORAGE.
SURVIVASIITY | THE ADDITIONAL CODE AND PROCESSING REQUIRED FOR
MODULAR, RECONFIGURABLE. ANOMALY TOLERANT SOFTWARE
RESULTS IN LESS EFFICIENT OPERATION.
USING MODULAR, VISIBLE, SELF-DESCRIPTIVE CODE TO INCREASE
PROENCY MAINTAINABILITY | MAINTAINABILITY AND VERIFIABILITY USUALLY INCREASES
€ vs VERIFABRITY | QVERHEAD AND RESULTS IN LESS EFFICIENT OPERATION. CODE
WHICH IS OPTIMIZED FOR EFFICIENCY POSES PROBLEMS TO THE
TESTER & MAINTAINER.
ALEXBILTY | THE GENERALITY REQUIRED FOR FLEXISLE AND REUSABLE
REUSABIITY | SOFTWARE INCREASES OVERHEAD AND DECREASES EFFICIENCY.
THE USE OF CODE OPTIMIZED FOR EFFICIENCY USUALLY
PORTASLITY | ngCREASES PORTABILITY.
THE OVERHEAD FOR CONVERSION FROM STANDARD DATA
INTEROPERABILITY | ns PRESENTATIONS AND FOR THE USE OF STANDARD INTERFACE
ROUTINES DECREASES OPERATING EFFICIENCY.
THE USE OF MODULAR, GENERAL SOFTWARE USUALLY DECREASES
EXPANGABILITY | OPERATING EFFICIENCY.
THE DISTRIBUTEDNESS REQUIRED FOR SURVIVABLE SOFTWARE
SURVIVABLITY | neCREASES THE RISK OF UNAUTHORIZED ACCESS.
MEXBILTY | THE GENERALITY REQUIRED FOR FLEXIBLE AND REUSABLE
REUSABILITY | SOFTWARE INCREASES THE RISK OF UNAUTHORIZED ACCESS.
m“n " COUPLED SYSTEM HAVE MORE AVENUES OF ACCESS, DIFFERENT
NTEROPERABILITY | USERS. AND COMIMON DATA REPRESENTATIONS; THE ¥ OFTEN
SHARE DATA AND CODE. THESE INCREASE THE POTENTIAL FOR
ACCIDENTAL OR DELIBERATE ACCESS OF SENSITIVE DATA.
THE GENERALITY REQUIRED FOR EXPANDABLE SOFTWARE
EXPANDABILITY | jNCREASES THE RISK OF UNAUTHORIZED ACCESS.
SURVIVABILITY ,'o'-:"f“‘.“l;_"'m THE RECONHGURABILITY REQUIRED FOR SURVIVABLE SOFTWARE
vs REUSABKITY | REOUCES ITS FLEXSILITY, PORTABILITY, AND REUSABIITY

3, 8 Ay

Py

‘ A
Fy

"2 4 & &

P e
RN

O

b Lgvannadi 14

—
e e

* el Rl S S AR AN

ey on an 0 e .

Maintainability

Verifiability*
o o o "> - . o= .o

Flexibility

Portability

ot @ - > - - - -

Reusability

Interoperabiiity

Expandability*

b--------------d

1-0.1 (Average Num-
ber of Man-Days
To Fix)

e an o s > e e > o - o o o
L2

1 - 0.05 (Average Num-
ber of Man-Days
To Change)

o e a0 on n av on o> > W oz o> o a» @ o

1- Effort To Transport
Effort to Implement

1- Effort To Convert
Effort To Develop

Effort To Couple
+ Effort to Develop

1 - Effort To Expand

M € P n VST W g T AV T a Tt w e CLE NN W -
Table 3.1-7 Software Quality Ratings
Quality Factor Rating Explanation
-co-"_“-mﬁ---------.'---------l'--—---- - e - - e oy
Reliability 1- Number of Errors In Terms Of The Number Of
Number of Lines Errors That Occur After
Survivability* 1- Number of Errors In Terms Of The Number Of
Words Of Object Survivability Related Errors
Code That Occur After the Start of
Formal Testing

P A D AP D GP D) P G G aE G =D .y oy

in Terms Of Average Effort
To Locate and Fix An Error

L_------------_1

SRR

in Terms Cf Average Effort
To Extend Software To Satisfy
Other Requirements

in Terms Of Effort To Convert
Software For Use In Another
Environment And The Original
{mpiementation Effort

In Terms Of Effort To Convert
Software For Use In Another
Application And The Original
Development Effort

b oo oo oceo oo oo oo oy

in Terms Of Effort To Couple
Software And The Original
Development Effort

b s s s av o v o0 o a» = - - -y

In Terms Of Effort To Increase

Effort To Develop Software Capability/Perform-
and and Original Develop-
ment Effort

* = New or Modified
** 2 None Development
3-12

b

L/
P .:'J<J

.
N ey
.
ettt

TRACEABRITY CONSISTENCY COMPLETENESS SIMPLICITY SPECIFICITY

- —— s

ANOMALY MANAGEMENT ACCURACY CONSISTENCY SIMPLICITY

EFFECTIVENESS

MAINTAINABILITY

CONCISENESS MODULARITY VISBLITY SELF-DESCRIPTIVENESS CONSISTENCY SIMPLICITY

3'

® = New
¢ o Modified

o s,
LA

A

Figure 3.1-1 Relationship of Criteria to Software Quality Factors

h O
>
;k'l." s.f\..'..'-

3
S

bl 3-13

bt 8- o, 8, 810y
200 0 22

g ‘; LA AR

9,00, 5.0 0,

2
s

LA

AN

PITLTN NS Ly

3

-

R R N Y

A
5

R W S

DR RN

GENERALITY

SELF-DESCRIPTIVENESS SIMPLICITY

*r

SELF-DESCRIPTIVENESS

SELF-DESCRIPTIVENESS

¢ » New

** = Modified

Figure 3.1-1 Relationship of Criteria to Software Quality Factors (Continued)

Ry '.:,\'_\'_\'.\' AR

(RS)

DIPR JATI
0

o T e

D T
N

A LT NS

LA
e " up

-

‘i
R A AL
N e e

'

e
LYAS
-.". .
» '.-

‘Y
N
L0
S
Sl
- Table 3.1-8 Software Quality Factors and Criteria
= SOFTWARE SOFTWARE SOFTWARE
e OPERATION REVISION TRANSITION
RN QUALITY FACTOR 1T
(USERORRNTED) SIelE|n|S[S|N{E[E]o]E]|n]x
N R L F T A R 1 R E R v T P
“ o R | | E 8 v N [} X T S € A
E A [G] 1 T F [} A A R N
C a] R L v A)] 8 8 o] o]
- T) 3 1 [} A 1 A 1 ¢ t (4 A
g A] N L N T T 8 N 8 L L L 3 8
e el i1 lcliy |yl]al] 1] R
L. S T Y L 8 L T T T A L
e s | v] Yy iy [y |e |
SR i B P T
v i}y L]y
e s 1Tl (]
v |- T
i Y
; ® ACCURACY
::2 ® ANOMALY MANAGEMENT** X [x]
N ® AUGMENTABILITY**]
.
i ® AUTONOMY*]
- ® COMMONALITY** x
B 0000 b e SRR O S N R NS R U S A I Tl H
2 ® COMMUNICATIVENESS 1 } T 1
:.j'_: ® COMPLETENESS x
O ® CONCISENESS
ot
s ® CONSISTENCY x| x
® DISTRIBUTEDNESS® "
A ® EFFECTIVENESS** x 1 17
;.“:
< ® GENERALITY x x x]
A ® INDEPENDENCE** x | x
e ® MODULARITY Gl x| x| x]x|x]|x|&
® OPERABILITY x
----------------------------- YT T T T womodeoodasodooedo oo oo ofe e - oo o o ofe o
A~ ~ RECONFIGURABILITY 1 T777°777
-
P <, ® SELF-DESCRIPTIVENESS X x{x1x/!x
9' 2 e SIMPLCITY G| x x Gt (Gdl |G
0N ® SPECIFICITY*]] Gd
— ® SYSTEM ACCESSIBILITY** X
----------------------------- I s Rt R Rt R W R T
oo ® TRACEABILITY X 1
a e TRAINING X
e
‘ e VIRTUAUITY* GAIGd Gd
S e VISIBILITY** Cd G| «
- * o NEW [x] « new retaTiONsHI
~ o ** = DIFFERENT X = PREVIOUSLY ESTABLISHED RELATIONSHIP
\‘_*..
0N
N
Aty
l
3o
"’l
’
o 3-15

QHHIOON = ,,
MIN = ,
(SHUVUEI 'SINILNOY LNGLNO/LNGNI ‘STILINILN ‘WILSAS ONILVYIJO
AuTEvVSNIYe "WILSAS ONILNANOD) INIWNOUIANT JUVMLIOS IHL NO AINION3JI0
ALNEV1¥Ode “NON S19 INIW¥ 3130 HOIHA RIVMLIOS FHL 40 SIANSWLLY ISOHL @ «s3INIONIJIONI @
ALvgVSNIYe "NOILVII1ddY 3HL OL 193453Y HLIM QIWHO0343d SNOLLINNS
+ALINGVOANVAXI @ AUNEIXIe IH1 01 H1GVIYE 30IAOYd HOIHM IUVMLIOS IH1 4O SILNBIYLLY ISOHL ¢ ALUVEINID o
“SNOLLINNI SNIWYONId M
(IML Y0130 ‘IDVNOLS ‘INIL DNISSIDOU) SINUNOSTY 4O NOILVZINAN
AINFDIFT e VNNV YO J0IAOND HOIHM JNVYMLIOS IHL 40 SILNBIBLLY ISOHL. @ +sSSINFAIIIT ©
W3LSAS THL NIHLIM Q3LV¥Vd3S
ATIVIID01 HO ATIVIIHIVEDOID JHY SNOILINNS FUVMLIOS HIIHM
+ALNGYAIANNS ® 0133930 3H1 INIWYILIA HIIHM TUVMLIOS IH1 4O STLNBIMLLY ISOHL © «SSINGILNBYISIA @
ALNEMIIYe "NOILYLON GNY SINDINHIIL NOILVININI 14 ANV NOIS3Q
ALMEVNIVINIVN ® SSINLOTWOD® WYOJINN YO4 3MAONJ HIIHAL IUVMLIOS IHL 4O SILNSMLLY ISOHL » AINILSISNDD o
"3003 40 ANNOWY WNININN ¥ HLIM NOLINNY ¥ 30 NOLLYANINI VW
ALNGYNIVINIVW e VO4 301A0¥d HOIHM TEVMLIOS IHL 40 SILNBINLLY JSOHL o SSINISIINOD ©
"GIVINDIY SNOLLINNA IHL 4O NOILVININI 1dn)
SSINLIINNOD ® TIN3 J0IAOUS HIIHM TUVMLIOS 3HE 40 SILNBIILLY ISOHL @ SSINILIIINOD ~
o™
"GILVIVNISSY 38 NVD HIIHM SLNAINO
ALINGYSN® | ANV SINANINISN JOIAOUD HOIHM TUVMLIOS IHL JOSIINENILIY ISOHL o | SSINIALVIINNWNDD o
"SNOILVINISIUAIY
V1V0 GNY *SINLLNON ‘ST0J010¥d ¥O4 SQUYANVLS DVIUILN
ALNEVEIJONIIN ® 40 35N IHL ¥O4 JOMAOUA HOIHM FHVMLIOS 3H] 40 SIANMVLIY ISOHL @ +sALITYNOWINOD ®
"SNOLLONNS ONV SIIVAHILM NO AINIGN34IQ
sALTWGVAIRENS @ -NON S11 INWWNIL3G HIHM JUVMIIOS IHL JO STLNMVLLY JSOHL @ +ANONOLNY
"VAVG ONV SNOUOINN ¥O4 ALINEVEVD W
«ALINEVONVAX3® 10 NOISNVAX3 ¥O4 JQIAONd HOIHM TUVMLIOS INL 40 SILNIYLLY ISOHL ¢ SAILVEYININONY o L
SALNEVAIAUNS @ "SNQIAIGNOD TVMINON-NON NON3 ANIA0DIY GNY ¥IQNN SNOILVN3ZIO ++ INIWIOVNVI -
AUHEVIIING | JO ALINNILNOI W04 IGIACUE HIHM TWVMLIOS IH1 O STINBNYLLY ISOHL @ ATUNONY o 0
“SLNGLNO ONV SNOILYINITVD NI NOISIDINY
AUngVIIe GIVINDIN IHL INAONA HIHM IUVMLIOS IHL 40 SILNGMLLY ISOHL @ AVINDV ° -
. -.
$YOLIV4 GILVIIW NOILINIII0 NONILIVD)
. .\
suonjuysg eusud Kjend s1emyjos 6-1°¢ ojqel
.-I~§.-.
h.l .- .
L
AP
-. \o ..n
..!"-bﬁl 1.
A
R
Wy
2l
o
-cnf.n‘?#).}\ N R A A AR A . b ~ird P XX AL Ao MM 2 v .- - - . rdfc-t
NI GO0 RSOBNS QOPXKE G ARARN TR | RRIRARR| IO | SArAAn, CRAX

,-. by ..c. * 1 e RO IR L ... ' b A u...:.. kN o ad.-t et ..-. ! IR Q .. e ., -.- ‘....-.. At Ay S AR &. e .\.-.-‘ \.\. o S o
,;
o
OIHAONW = o,
MIN = ,
«sALNIGVIHYIA S (NOILYINIWNY LN
ALNSVNIVINIVIN ® “9°3) NOILVYIJO ONV ININJOTIAIA IHL JO ONTIOLINOW ssALINANSIA o
AlLugvsne SNLVLS IQIAONd HIIHM JUVMLIOS IHL JO SILNINYLLY ISOHL @
‘(SNOHLVIOTIDVNOLS
sALNIVONVIXI® ‘$ASIA/SHOSSID0U 4O YITNNN “9'3) SOUSINILIVYVHD TWIAD010401
AlMgvsne YO “IWID0T “TYIHSAHI IHL JO IDATIMON ¥35N IMNDIV LON $300 SALTWALNA o
AL¥D3IiNe AVHLWILSAS V INISIUd HIHM JNVMLIOS IHL 3O SILNANILLY ISOHL @
"NORRVZINVINIWYS TVILING 301A0Yd ¥O NOILYY IO INIWIND ONINIVYL ©
Alwavsne WOUS NOILISNVYL 30IAOYd HIHM JUYMLIOS IHL 4O SILNEINLLY ISOHL ©

"ANIVWNONIANS IWNOILVE 140 ONY 3JOTIANI ININJOT1IAI0 ON41DIdS
JH1 01 1334534 HIIM SINIWIINOIY IHL OL NOILVINIWI 14N IHL WO¥S

ALNEVIOVYL o

SSINLIIWYOD e NISIYO 10 GVIYHL V IOIAONd HOIHAA JUVYMLIOS IMNL 40 SILNBIYLLY ISOHL e
‘VAVA OGNV VYMLI0S 3IHL O1 $$3DDV 40 LNV ssALINS
ALNOIINtS ONY TOULNOD 304 JOINO¥d HIIHM FNVAMLI0S IHL JO SIANBINLLY ISOHL @ “SIDDVINILSAS o
ssALINEVIINIAG ‘SNOILLINNS JO NOLLVINIWI 1dWI ONY NOLLINIEZIQ IHL
SALNSYONYdX3I® SSINLIINYOD ¢ NI ALINYTINONIS O3 IOIA0Yd HOIHM JUVALIOS ML 0 SILNBINLLY ISOHL o sALIDIADIALS @ ~
~
SALNNBVONVIXI® L ALNEVHINIAS ‘YWINNVYIN NGVAONVLISYIONN]
ALNBVSAIN® ALINBVNIVINIVIN G ANV X3TINO0I-NON LSOW FHL NI SNOLLINNS 40 NOILY INIWI 1dWR ONY o«
ALWaIX3je Alnevnive NOILINIZZQ FHL YOJ IAIAOYEd HITHM FHVYMLIO0S IHL JOSIANANNLLY ISOHL @ ALDNANS @
ALHEVINOd® L ,ALITEVISINIAS ‘NOUDNNY ¥V 40 NOHLY AININI TN I L
AUNEVSANG ALNMXIVI® ALTNIVNIVINIVIN G 40 NOILYNYIEXI 3OIAOUd HIHM JUVMLIOS IHL JO SILNBIILLY ISOHL @ SSINIALLAYISIA-413S o
‘SHYS SANT NOULVIINNNWOD
YO 'S1INN IDVIOLS 'SHOSSID0U IVOW YO INO NIHM NOILYYIJO WILSAS
ALNgYSNe 40 ALINNILNOD ¥O4 IOIAOYd HOIHM JUVYMLI0S 3HL JOSILNBINLIV ISOHL © SALINEVUNIIINOIIY o
AUNEYSNIY® L ALTNEVIIYIA S
SAUNEVOANVIXI® ALNEVIONd® ALIMEVNIVINIVWG "TWVMLIOS IHL 3O NOILVN 4O IHL HUIM GINVIDNOD SFUNAII0Nd
AUNSVIIIOUILNI® ALINBIXI14® LALINIBYAIAUNS® ONY SNOLLYYI4O ININYILIT HIHM UVALIOS FHL JO STLNIMYLLY ISOHL @ AUUSWNIJO o
AlNNSvVSNNe ‘ONITINO0D WINNILLEO HAM $IINCGOW IAISTHOD ATHIIH
ALNEYLNOde 40 FUNLONILS ¥ ICIAOYE HIIHM FUVMLIOS IHL JO SAUNTNLLY ISOHL @ ALYVINAOW o
SWOLWVIGUVIN NOILINII3Q NONILND
(PonURUOD) suCRIUYQG CLRIMD KaljenD 918105 6-} € 91qeL
s ‘Hcﬂnniunqnn-iq-‘ -‘_.--.!\n\ .- .--.\-‘ T et T a e - J\Jic-l‘.ld‘lcnﬂ\] nn. ..- .-. -o [N | M Qﬂ.-lf.}t* 3 .-..-‘. ‘.0\- .\ .4

..\-.\\N. a s Tv e
> y %-

- CUEARANAF LA AR -
SRR ‘. i _.-Q- . ---'- S \ ',AW’ 0!“

eX

-y

“‘.-s\.-_...‘

e

DL Y

- '."‘-..‘
LS

NN
A

L)

~ . .n‘-"..f ..

Ne
\"

N
ORI Ty
AATIEN

T

LAP%)
Sw %
s

1-‘ I\ -

. - - ~ —_—— Mg Badi sl send .
A S S IR S R SN IO W T L e N L L L T T T T T e N T TN

¢

-

B

o

3.1.2.1 Revised Criteria

,_-..; Of the twenty three previously identified criteria, twelve remain identical, ten were
:E}'f: revised and consolidated into seven criteria with new names, and one was changed to a
Ej:_ quality factor (expandability - formerly a criterion of flexibility). The revised criteria are

discussed below.

"’ Error tolerance was changed to the more genera! term "anomaly management" which
includes management of the system configuration under non-nominal conditions - a
” common task for distributed system software. Execution efficiency and storage ef-
a0 ficiency were consolidated to the more general term effectiveness, meaning minimum
'__Z::j: utilization of resources in performing functions. This enables the inclusion of operator
.::‘::: time in the measure of efficiency. Access control and access audit were consolidated into
: one term--accessibility. Instrumentation was changed to the more inclusive term
At visibility. This enables consideration of tools and procedures used to monitor the status of
'.L the development process in addition to tools for monitoring the status of product
x“'-ﬁzj: operation.

. Software system independence and machine independence were replaced by the term
:::E::: independence. This enables consideration of modular and functional independence.
":. Communications commonality and data commonality were combined in the term com-
- monality. Expandability was changed from a criterion of flexibility to a quality factor--
\..\ providing the capability to consider system growth at the quality factor level.

RN

:_ \53 3.1.22 New Criteria

R %

., Five new criteria were identified during the investigation of software characteristics for
:f::j distributed systems as indicated in Table 3.1-8: autonomy, distributedness, reconfigur-
.j?jlfj ability, specificity, and virtuality. Although these new criteria were identified through
N ‘ concerns for distributed systems, specificity and virtuality may also be applicable to
uniprocessor systems. Reconfigurability, distributedness, and autonomy are associated
\;Q\ only with the quality factor survivability and may be applicable to very few uniprocessor
‘l:__. systems.

g

AN

S 3-18

i‘:

RIS T
DRSO

PSSR ST L SRS PO . ~ e e s e e e . R . -, s
P R R S S PR e R IR) et T et et et N B e
L . e, T TN e e ST T e s A L C . .

PIRACTL P AP L . PRI AL .
. P I I P P N P T A R R) . BRI PRI S . et et
al o A8 A 2 e s s PN U S ‘LiliI"‘.“ CHRPT I W Wt S Gl Dt G 1S Dt N A s

S

s 3.1.2.3 Effect of Criteria on Software Quality Factors _
4‘- Ty The effect of each criterion on each quality factor was evaluated; the results are ?:7
S:::-: summarized in Table 3.1-10. The criteria indicating the presence of a quality factor are
(‘\f:‘ indicated with an "X". If the existence of the attributes characterized by each criterion o
"::'j positively impacts a factor, an "A" was placed in the matrix. If the existence of the »
o attributes characterized by each criterion negatively impacts a factor, an "A" was placed
:_.\ in the matrix. If there was no relationship between the criterion and the quality factor or ::'_
:E}' if the relationship was highly application-dependent, the matrix was left blank. These ;:',‘:
criteria-to-factor relationships are the basis for the factor-to-factor relationships dis- =
o cussed in Section 3.1.1. .
o =
o o
N 3.1.3 Software Quality Metrics
' ~ Previous analysis and evaluation had resulted in the identification of thirty nine metrics.
\E:_\ Eleven new metrics were identified under this contract. These metrics are:
> .
o, e, g
N o AM.6 Communications Errors Checklist
._(___ o AM.7 Node/Communications Failures Checklist f
,_43 o AG.3 Channel Extensibility Measure
“ s o AG. Design Extensibility Checklist)
. o AU.l Interface Complexity Measure N
. -) AU.2 Self-Sufficiency Checklist X
,: o DLI Design Structure Checklist 2
o o MO.3 Modular Design Measure .
"‘. o RE.l Restructure Checklist
" o SP.1 Scope of Function Measure L‘
) VR.! System/Data Independence Checklist \
E 3
A = The complete list of metrics is shown in Table 3.1-11. Some of the metric names were :
' revised as was shown in Table 2.2-2. b‘
a’s *
Nt e
= %
-.’ 3-19 .

Table 3.1-10 Effect of Criteria on Software Quality Factors

SOFTWARE SOFTWARE SOFTWARE
OPERATION REVISION TRANSITION
QUALITY FACTOR [< R £ | V] I H M v F [4 R { £
0 E F N S U A 3 L o 3 N X
R L F T A R | R E R u T [4
R 1] E B v N 1 X T H € A
E A C G [} 1 T F | A A R N
C 8 [} R L v A [} 8 8 8 o 2]
T 1 E [} t A ! A ' [} } P A
N t N T T 8 N 8 t t L E 8
€ [} C Y Y 14 A [} | |) R 1
S T Y L B L T T T A L
S Yy]] | Y A v] |
T L T | T
Y) Y L Y
* "‘ L]] L4
QUALITY CRITERIA 1% b T
Y
® ACCURACY x | YAN
o ANOMALY MANAGEMENT** |A\| x [A] A\ x
® AUGMENTABILITY** A X
e AUTONOMY* x
® COMMONALITY** JAN R i
@ COMMUNICATIVENESS '“r 71, “"":“m"“[& AN -"A-""ﬂ A
® COMPLETENESS x (A JANPAN
® CONCISENESS Al A x A
® CONSISTENCY x | x x [AIA FAN JAN
® DISTRIBUTEDNESS* x
o T “‘*“j T T T Tatal TalT 171777
® EFFECTIVENESS x A4AlA A
® GENERALITY AAd A x x |A] x
® INDEPENDENCE** A AN Al x| x AN
® MODULARITY A x X X X X X X X
® OPERABILITY 4 A |] 4 |
@ “RECONFIGURABILITY* TIA A'"' N IV Alalal T
® SELF-DESCRIPTIVENESS A x {x | x| x|x AN
® SIMPLICITY x| x |A x| x| x x X
® SPECIFICITY* x IAIA A\ x X
o svsremaccessurye: | | LA x AL || (A) A
e TRACEABILITY x VAN VAN VAN AN AN
e TRAINING X JAN
® VIRTUALITY* Al x| x x
o VISIBILITY** A x x | x
* = NEW A- POSITIVE CORRELATION X = BASIC ASSOCIATION
** » MODIFIED M\~ NEGATIVE CORRELATION

SO N PR AT AR A AR I AT R Pa A N L A I S e RO S e R PO RIS I A

RS TABLE 3.1-11. METRIC TABLES SUMMARY

= CRITERIA ACRONY METRICS

= ACCURACY AY.l ACCURACY CHECKLIST

ANOMALY MANAGEMENT AM.1 ERROR TOLERANCE/CONTROL CHECKLIST
- AM.2 IMPROPER INPUT DATA CHECKLIST
AM.3 COMPUTATIONAL FAILURES CHECKLIST
AM.4 HARDWARE FAULTS CHECKLIST

- AM.5 DEVICE ERRORS CHECKLIST

o AM.6* | COMMUNICATION ERRORS CHECKLIST
AM.7* | NODE/COMMUNICATIONS FAILURES
CHECKLIST

AUGMENTABILITY AG.1 DATA STORAGE EXPANSION MEASURE
AG.2 COMPUTATION EXTENSIBILITY MEASURE
AG.3* CHANNEL EXTENSIBILITY MEASURE
AG.4* DESIGN EXTENSIBILITY CHECKLIST

) AUTONOMY * AU.1* INTERFACE COMPLEXIBILITY MEASURE

N AU.2* SELF-SUFFICIENCY CHECKLIST

Z;' COMMONALITY CL.l COMMUNICATIONS COMMONALITY CHECK-

. LIST

CL.2 DATA COMMONALITY CHECKLIST

{ COMMUNICATIVENESS CM.1 USER INPUT INTERFACE MEASURE

CM.2 USER OUTPUT INTERFACE MEASURE

3

'-:i COMPLETENESS CP.1 COMPLETENESS CHECKLIST

X

" CONCISENESS CO.1 HALSTEAD'S MEASURE

:' CONSISTENCY CS.1 PROCEDURE CONSISTENCY MEASURE

o CS.2 DATA CONSISTENCY MEASURE

.'::“ DISTRIBUTEDNESS* DI.1* DESIGN STRUCTURE CHECKLIST
EFFECTIVENESS EF.l PERFORMANCE REQUIREMENTS

- EF.2 ITERATIVE PROCESSING EFFICIENCY

MEASURE

EF.3 DATA USAGE EFFICIENCY MEASURE
EF.4 STORAGE EFFICIENCY MEASURE

* = New

o 3-21

AN At e e e S S A AR A

TABLE 3.1-11. METRIC TABLES SUMMARY (Continued)

CRITERIA ACRONYM METRICS
GENERALITY GE.l MODULE REFERENCE BY OTHER MODULES
GE.2 IMPLEMENTATION FOR GENERALITY
CHECKLIST
INDEPENDENCE ID.1 SOFTWARE SYSTEM INDEPENDENCE
MEASURE
ID.2 MACHINE INDEPENDENCE MEASURE
MODULARITY MO.1 INDEPENDENCE/STABILITY MEASURE
MO.2 MODULAR IMPLEMENTATION MEASURE
MO.3* |MODULAR DESIGN MEASURE
OPERABILITY OP.1 OPERABILITY CHECKLIST
RECONFIGURABILITY* RE.1* RESTRUCTURE CHECKLIST
SELF-DESCRIPTIVENESS SD.1 QUANTITY OF COMMENTS
SD.2 EFFECTIVENESS OF COMMENTS MEASURE
SD.3 DESCRIPTIVENESS OF LANGUAGE MEASURE
SIMPLICITY SL1 DESIGN STRUCTURE MEASURE
SL2 STRUCTURED LANGUAGE OR PRE-
PROCESSOR
SL3 DATA AND CONTROL FLOW COMPLEXITY
MEASURE
SL4 CODING SIMPLICITY MEASURE
SPECIFICITY* SP.1* SCOPE OF FUNCTION MEASURE
SYSTEM ACCESSIBILITY SA.1 ACCESS CONTROL CHECKLIST
SA.2 ACCESS AUDIT CHECKLIST
TRACEABILITY TR.1 CROSS REFERENCE
TRAINING TN.1 TRAINING CHECKLIST
VIRTUALITY* VR.1* SYSTEM/DATA INDEPENDENCE CHECKLIST
VISIBILITY VS.1 MODULE TESTING MEASURE
VS.2 INTEGRATION TESTING MEASURE
VS.3 SYSTEM TESTING MEASURE

* = New

3-22

T T T L
LIPS EEy - LA
Tl et A AT A R T A R L RN o LW LN L

ot
‘ra

“a
4'a a"afa

3.2 SYSTEM QUALITY FRAMEWORK

Part of the task of the acquisition manager is to analyze system qﬁality requirements and
to determine the suballocation of those quality requirements to the software subsystem.
To aid in this task for distributed system applications a set of system-level quality factors
was defined, the corresponding quality criteria were identified, and a correspondence
between distributed system quality and distributed system software quality was de-
veloped. The following paragraphs discuss the factors, the criteria, and their corres-
pondence with software quality. There is a surface similarity among many of the
system-level factors and criteria and the software factors and criteria. This is
understandable since the software is viewed as a cornplete subsystem, and most of the
factors and criteria are general. However, the correspondence developed between system
and software quality factors illustrates the distinction between the system view and the

software view and emphasizes the uniqueness of each factor.

3.2.1 System Quality Factors

Sixteen system quality factors have been identified. Table 3.2-1 lists these quality
factors and poses a question which indicates the relevancy of each factor to a user.
Previous analysis and evaluation of software quality factors resulted in grouping factors
into three categories: product operation, product revision, and product transition. This
scheme was also used to group system quality factors as it emphasizes the user's view of
system life-cycle management. Table 3.2-2 provides definitions for all of the system
quality factors.

Twelve of the sixteen system quality factors are similar to the software quality factors
(see Section 3.1). Four of the quality factors are unique to systems or complete
subsystems: availability, safety, transportability, and interchangeability. Availability
requirements are usually allocated down to the computational subsystemm as a whole
including the software. Safety requirements are satisfied through design and construction
and throu. - additional system functions, sometimes supported by software. Transport-
ability refers to the physical relocation of a system, and interchangeability refers to the
transfer of a system component for use in another configuration. Both transportability
and interchangeability are especially applicable to fielded military systems. The software
factor portability is similar in nature to these two factors.

3-23

e N ey ., AT T e e
DI NN SPIT U T W G AT UeT T T W ST NP)

")'.I » .

.
2l

1 N WO

AN

Table 3.2-1 System Quality Factor identification

kA Y
...........

Activity User Concern Quality Factor _|
DOES IT DO WHAT IT'S SUPPOSED TO? | CORRECTNESS
WHAT CONFIDENCE CAN BE PLACED
IN WHAT IT DOES? RELIABILITY
HOW WELL DOES IT UTILIZE THE
RESOURCES? EFFICIENCY
HOW SECURE IS IT? INTEGRITY
GPERATION | HOW EASY IS ITTO UsE? USABILITY
HOW MUCH OF THE TIME CAN IT BE
USED? AVAILABILITY
HOW SAFE IS IT? SAFETY
HOW WELL WILL IT PERFORM UNDER
ADVERSE CONDITIONS? SURVIVABILITY
HOW EASILY CAN IT BE RELOCATED? | TRANSPORTABILITY
CAN IT BE REPAIRED? MAINTAINABILITY
iy | canmsoperaTion anD
PERFORMANCE BE VERIFIED? VERIFIABILITY
CAN IT BE CHANGED? FLEXIBILITY
CAN IT BE USED IN ANOTHER INTERCHANGE-
ENVIRONMENT? ABILITY
CAN IT BE USED IN ANOTHER
PRODUCT | APPLICATION? REUSABIUTY
TRANSITION
CAN IT BE INTERFACED WITH
ANOTHER SYSTEM? INTEROPERABILITY
CAN (TS CAPABILITY OR PERFORMANCE
BE EXPANDED OR UPGRADED? EXPANDABILITY
3-24

.

r
',

[}

M '..,‘l' »3
)

NS

S g a e
(AR

5 |

s«.
o

[] 'l
,L

5
LA

.l
A '
4-2 >

[
h)
&

+ N0
RGN
. | NN

. v L)
RN

L)
o'e

1o

[y
»
ot

i
4N
O.I P
A

-
LS

Table 3.2-2 System Quality Factor Definitions

ality Factor

_Definition

OPERATION

CORRECTNESS

RELIABIUTY

EFFICIENCY

INTEGRITY

USABILITY

AVAILABILITY

SAFETY
SURVIVABILITY

TRANSPORTABILITY

EXTENT TO WHICH THE SYSTEM SATISFIES
TS SPECIFICATIONS AND FULFILLS THE
USER'S MISSION OBJECTIVES.

PROBABILITY THAT THE SYSTEM WiILL
PERFORM ITS LOGICAL OPERATIONS IN
IXIELUS:EEGF'ED ENVIRONMENT WITHOUT

DEGREE OF UTILIZATION OF RESOURCES IN
PERFORMING FUNCTIONS.

EXTENT TO _WHICH UNAUTHORIZED
ACCESS TO THE SYSTEM OR SYTEM
INFORMATION CAN BE CONTROLLED.

EFFORT FOR TRAINING AND SYSTEM
OPERATIO

PORTION OF THE TOTAL OPERATIONAL
TIME THAT THE SYSTEM PERFORMS OR
SUPPORTS CRITICAL FUNCTIONS.

PROBABILITY THAT THE SYSTEM WILL NOT
CAUSE DAMAGE OR PHYSICAL INJURY.

PROBABILITY THAT THE SYSTEM WiILL
CONTINUE TO PERFORM OR SUPPORT
CRITICAL FUNCTIONS WHEN A PORTION
OF THE SYSTEM Is INOPERABLE

EFFORT TO PHYSICALLY RELOCATE THE
SYSTEM.

REVISION

MAINTAINABILITY
VERIFIABIUITY
FLEXIBILITY

AVERAGE EFFORT TO LOCATE AND FIX A
SYSTEM FAILURE.

EFFORT TO VERIFY THE SPECIFIED SYSTEM
OPERAT'ON AND PERFORMANCE.

EFFORT TO EXTEND THE SYSTEM MISSIONS

TRANSITION

INTERCHANGEABILITY

REUSABILITY

INTEROPERABILITY

EXPANDABILITY

EFFORT TO TRANSFER A SYSTEM
COMPONENT FOR USE IN ANOTHER
OPERATING ENVIRONMENT (E.G.,
CONFIGURATION).

EFFORT TO CONVERT A SYSTEM
COMPONENT FOR USE IN ANOTHER
APPLICATION

EFFORT REQUIRED TO COUPLE THE
SYSTEM WITH ANOTHER SYSTEM.

EFFORT TO INCREASE SYSTEM CAPABILITY
OR PERFORMANCE - ENHANCE CURRENT
FUNCTIONS OR ADD NEW FUNCTIONS.

TO SATISFY OTHER REQUIREMENTS.

.
\ -
C e,

3-25

\n’.' | Tk e RRARI R A .A‘..‘. A e ..')‘ A e Pl - R W W e .v S T e, T e " " e - PPN S i ’
"
T
oy
— L .
~ RS
A SAS
'-"‘ '.r:’
% g
.- 3.2.2 System Quality Criteria ,_.:::
- e
3¢ Thirty two quality criteria have been identified for distributed systems as illustrated in o
“ Figure 3.2-1 and Table 3.2-3. Twenty-four of the criteria are the same criteria as those :-:ff
L]
{ identified for distributed system software. Eight are peculiar to distributed systems: .'_:?.
Y PR
2 self -containedness, homogeneity, compliance, validity, clarity, comprehensibility, sup- 7"'\
03 portability, and compatibility. “_.
s B
'_sj 3.2.3 System Quality and Software Quality Correspondence g
"
" The following paragraphs discuss the software quality factors which are required if a high
N LA
o quality rating has been specified for one of the system quality factors. These ;"'_"_'
> -7
2N relationships aid the acquisition manager in the allocation of system quality requirements o
L) KA]
& o

to the software subsystem.

K T
:1 The discussions may also aid the acquisition manager in prioritizing or weighting the «:Ej?.'
\'-\ software quality criteria. For example, the discussion of system survivability points out E::;_
- the importance of anomaly management in ensuring system survivability; this in turn i:'_‘
) places a large emphasis on the anomaly management criterion of the software quality .
:, factor survivability. Another example is in the discussion of system reusability. A high A
\ quality rating for system reusability implies software reusability, flexibility, and veri- '-Z:j:f
> fiability. These three software quality factors have three criteria in common: modular- e
; ity, self-descriptiveness, and simplicity. This would place added emphasis on these ”
:: criteria over the other criteria of these three quality factors.
¥ &
" Table 3.2-4 summarizes the correspondence between system and software quality factors. :':'
- A positive relationship is indicated with an (x). A relationship that is application ‘
; dependent is indicated with a (-).]
X :
J High system correctness implies both high software correctness and high software -_'.‘"t_
¢ verifiability. The ability to verify software operation and performance against the
1': specifications and mission objectives aids in ensuring the correctness of the overall .:
: E; system.

] coe o
« e N .
. .
NPT ¥

A
“wh

3-26

.

P EANERXE S XA et avh A LSl A X Sl o el Wl salL ol il radi el i M N e A S R R R N S,

e
-
""" 13

Joas s s R

CORRECTNESS

) TRACEABILITY CONSISTENCY COMPLETENESS | SPECIHICITY

e —

A YA ANOMALY MANAGEMENT ACCURACY CONSISTENCY SIMPLICITY

k]

£ EFFECTIVENSS

VIRTUALITY ACCESSIBILITY

‘.‘. ‘. .I .l\.)-

|
%
|
i\
|

\\
EO-M’REHENS.IUTV TRAINING

N
X
“' CONSISTENCY SIMPLICITY ANOMALY MANAGEMENT MODULARITY RECONFIGURABILITY
w.': SAFETY
o
" .
L
<! smeLaTY ANOMALY MANAGEMENT visiBiLTY TRAINING OPERABILITY
o SURVIVABILITY
™ AUTONOMY DISTRIBUTEDNESS ANOMALY MANAGEMENT MODULARITY RECONFIGURASILITY
¢ q:)
TRANSPORTASILITY | xto-
. R
. MOOULARITY SELF-CONTAINEDNESS INDEPENDENCE PO
4+ ! . .\
= ¢ . - N $3 N . K ‘.\
Q . Figure 3.2-1 Relationship of Criteria to System Quality Factors 3
. =
~ R
vy
' L
Y .\‘.
. 3-27 oo
e
- oy
B} L

-

Padi e Rie St 3

-y

Y.y

LRV DR

i Bait el Tl hadh -2l
LR

A i
R

$

SPECFICITY

SELF-DESCRIPTIVENESS

| SELF-DESCRIPTIVENESS

CLARITY

p.
3
9 s
L E
-. M
3 W
3 m
\ m
¢
p e
: g
m
- » . ., 5w v e v _ v o s .
.\.-sv ’ v P -\-s\ P | AN 4 AR

SELF-DESCRIPTIVENESS

HOMOGENEITY

GENERALRTY

INDEPENDENCE

[GEN!MLII.TV

SELF-DESCRIPTIVENESS

SIMPLICITY MODULARITY

CLARITY

COMMONALITY MODULARITY COMPATIILITY

a

byt

P4 1
..-u...f-..
Py ..\\h. o,
PR S RCY

VIRTUALITY

p-q.-v.n .!-c...- .

Iy

Figure 3.2-1 Relationship of Criteria to System Quality Factors (Continued)

KXY VAXARKKAN T

A Ptk R At NS P AR AL M IR Rt Rl St . o A

Table 3.2-3 Distributed System Quality Factors and Criteria

SYSTEM SYSTEM
OPERATION REVISION

:

QUALITY FACTOR
(USERORIENTED)

POLY BT YT 1-1,Y

EL Y 3 Tl Y]
A<OBM=P="um
C4=BOAM- R~
A= e@ PR

KA =@ r=pLP)

<~ mupwn

KA r =P L~-CRNCN
LA —BPABO VNI B4
LA~r-@p=-p42->%
PO TN 5 R 1.1 4
A= =P =X

< 4=r—epmOZ>ITNRM4E~-
€A== —@PnCmD

LA —BPBMIOIM AR -
€A~r-8poOTPexXm

® TRACEABILITY
® CONSISTENCY
® COMPLETENESS
® COMPLIANCE

SN IO DU O IS S N A

--------------------------- P LTS TN P

® SPECIFICITY

o SIMPLICITY

® ANOMALY MANAGEMENT

o [®_AGCURACY __
. ® EFFECTIVENESS X

® ACCESSIBILITY X

® VIRTUALITY X

® VISIBILTY

N ® COMPREHENSIBILITY

4 ®_ TRAINING __{___‘___

.
<
»
g
X X XIX X X X X
x
3 X X IX
x

@ %X x
x
x
x

Y -.J.-- }--

e R e

® COMMUNICATIVENESS
® OPERABILITY
® MODULARITY X
® RECONFIGURABILITY X
X @ OISTRIBUTEONESS __ ...
; ® AUTONOMY
® SELF-CONTAINEDNESS X
® CONCISENESS X
® SUPPORTABILITY X
®_SELF-DESCRIPTIVENESS -

S ©. 5 SO N O O O O SN S

X XX X x X

'
H
-
1
'
XX X X
H
H
'
'
1
'
o .
)
1
1

--------------------- DTS 3

- ¢ GENERALITY
‘- ® HOMOGENEITY X
oo ® INDEPENDENCE X

® AUGMENTABILITY X
¢ COMPATIBILITY X X
® COMMONALITY X

PR R A R P AT P I I T AR S ST T e

WXALLZOA®—d= >

=-BrwEQoWE LB — D>

EWInda—d=F>

X
X

[N-1 { % § 0 L0 2

WK — - —= >

X X X

w D —h =@ —d==>

FL~Zr- A -2LB~ i = >

NI =D LB=d == >

XX X

D2RLB = d=>

—ErwWwE=->

OPERATION

W= =—wEU>

Tt AT

CL LY Ty 8

VOKEWURZuwnn

3-30

-

LT e

Table 3.2-4 Relationship between System and Software Factors

® CORRECTNESS

® RELIABILITY

o EFFICIENCY

® INTEGRITY

® AVAILABILITY

o SURVIVABILITY

® TRANSPORTABILITY

@ MAINTAINABILITY

® VERIFIABILITY

® FLEXIBILITY

® INTERCHANGEABILITY

® REUSABILITY

® INTEROPERABILITY

® EXPANDABILITY

X = POSITIVE RELATIONSHIP
- = APPLICATION DEPENDENT

® USABILITY
® SAFETY

o
4
€
R
A
T
|
[
N
R
[
v
1
H
[}
o
N

rELZRn~ =02

0 f Oeere crw L A S
e VIO . X Py 58, N

DR A o 4 2P P L S S G TSI ISP R B e -
... ..1;11, E !-\N\,.\ﬂ --m. y 704 -4 .-\-\-*ind.-.‘.f\ 01 4..----131-,

High system reliability implies high software reliability, correctness, and integrity. Both
software reliability and software correctness contribute to the ability of the system to
perform intended functions. High software integrity insures that system reliability will
not be adversely effected by accidental or deliberate unauthorized access to the software
or the data.

High system efficiency implies both high software efficiency and high software usability.
Software usability directly affects ocperator effectiveness and efficiency; and the system

operator is a factor in the measure of system efficiency.

High system integrity implies high software integrity. In most applications system
integrity is dependent upon the software and continued software functioning. In these

applications software survivability would also impact system integrity.

High system usability implies high software usability. In applications where accuracy and
precision affect the amount of time and effort to operate the system, the quality criteria
accuracy would also be emphasized. (Accuracy is an attribute of the quality factor

reliability.)

High system availability implies high software reliability, survivability, and maintain-
ability. High quality ratings for these factors ensure that the system will seldom fail,
that critical functions will continue to be performed in the event of a failure, and that the

fault will be quickly corrected.

High system safety implies high software correctness, reliability, integrity, and veri-
fiability. High ratings for these factors ensure that the system will perform as specified,

that it will seldom fail, and that it is secure from unauthorized access.

High system survivability implies redundancy of components and communication paths and
implies complex anomaly management. Complex anomaly management places emphasis
¥ on high software survivability. Emphasis is also placed on high software interoperability
for redundancy and increased communications and, for networks with a variety of users,

on high software integrity because of the increased vulnerability to unauthorized access.

3-31

B R R P
D P L
-

\. <

A
“a .
-‘- - -

o .‘_._.-.'.. EA RS St T - AR S e e L .
A R N LI , - B e L SN . LR A R A
PN I TSI AP d Lamm e 8t n ;i aatala et A e a ey

-~

N N

High system transportability implies low power, light weight, and compactness. These

result in constraints on the computing system such as: limited storage; emphasis on
firmware rather than software; limited facilities for data entry and display; and wireless
communication. These constraints place emphasis on the software quality factors of
efficiency, integrity, and usability. Maintenance costs for the software of a transportable
system would naturally be high. This in turn places emphasis on the software quality

factor reliability to reduce the probability of failure.

High system maintainability is enhanced by software which is easily maintainable and by

software which aids in the detection and isolation of faults. This places emphasis on high
software maintainability and on high software survivability to continue fault detection

and isolation functions even when a portion of the system is inoperable.

High system verifiability implies component modularity, function modularity, fault

isolation, high visibility of system operation through instrumentation and system displays,

and diagnostic aids such as self-test capabilities. This places emphasis on high software
verifiability and high software maintainability. Also, high software survivability would)
enable functions such as instrumentation, displays, and self-test to continue when a f:ﬁ;

portion of the system is inoperable.

High system flexibility implies modular system components and generality of component
functions. This requires flexible software which is both modular and general and
emphasizes verification of changes. In addition to high flexibility and verifiability, high
integrity would also be emphasized in instances where modification of functions, missions,

or data could possibly compromise security.

High system interchangeability implies that a family of systems (or subsystems) has

components which are similar in function and which may be substituted for each other.
This implies that there may be a need to reuse software from system to system (high

reusability), to transfer software to another system configuration (high portability), or to

modify software missions, functions, or data (high flexibility).
High system reusability implies modularity of components and modularity and specificity

of functions. This eases the task of selection and removal for reuse. It also implies that

functions and components are general enough to be tailored to a new application. This

3-32

places emphasis on high software reusability, on high software flexibility to accommodate
changes, and on high software verifiability to test changes.

High system interoperability implies commonality of interface protocols, routines, and

data representations. It also implies compatibility of interface equipment. This places
emphasis on the high interoperability of the software and the ability to reuse the software
on interfacing systems (high reusability). For some applications there may also be a need

to transfer software to an interfacing system (portability).

High system expandability implies generality and modularity of components and functions
and implies spare system capacity. This emphasizes high software expandability, high
software flexibility to incorporate enhancements and new functions, and high software
verifiability to test changes. For a system which is capacity limited, high software

efficiency would be emphasized.

3-33

-

. P
e te -2
LR AT A

el 4

L]

S A
IR &
: B

bl

oY

PN
l‘.-‘.

- Bh e
N " .‘. ."-“': ': \' .

»
w
.

Y
RO SRSA
=" \'.\,'\' '-: 'n: "'{

4.0
TRANSITIONAL STUDY

This section describes the software quality framework elements which were proposed but
dropped from the framework. One quality factor was dropped. Six quality criteria were
dropped. No metrics were dropped; but 26 metric elements were dropped.

4.1 FACTORS STUDIED AND DROPPED

The quality factor evolvability was proposed and dropped. Evolvability is defined as the
extent to which the software performance can be enhanced by the incorporation of new
technology (e.g., algorithm, compiler). The criteria associated with the quality factor

are: virtuality, generality, modularity, specificity, and simplicity.

Evolvability was dropped because of its similarity to expandability, and the definition of
expandability was modified to include evolvability.

4.2 CFITERIA STUDIED AND DROPPED

Six quality criteria were studied and dropped: clarity, compatibility, compliance,
comprehensibility, supportability, and validity. The definitions of these criteria are as

follows.

. Clarity - those attributes of the software ‘vhich provide non-
ambiguous descriptions of functions and implementations.

. Compatibility - those attributes of the software which provide interface
protocols and routines that are appropriate to the interface
equipment and features.

. Compliance - those attributes of the software which promote implemen-
tations that conform to the requirements.

. Comprehensibility - those attributes of the software which enhance understand-

ing of the operation of the software.

4-1

.v"- rest I -~ . o y * R R P .." - T N
o o S A A QR ERIOLIRI R ;
R AR A . .

- - = . at " e~ Y
™ T

AT

."
4

4

. &
Y

:j . Supportability - those attributes of the software which provide for ease in : .l'_i"
N creation of new software versions (e.g., use of HOL, version L
\ update scheme).
\ . .
o . Validity - those attributes of the software which constrain implemen-
tations to a range of acceptable solutions.
K These six criteria were dropped either because of their similarity to and overlap with
S other criteria or because of lack of metrics and metric elements to support them.
2
" 4.3 METRICS STUDIED AND DROPPED
:
,i No metrics were dropped from the proposed framework, but twenty six metric elements
$2 were studied and dropped. The following metric elements were dropped because of their
. similarity or overlap with existing metric elements, because they were more applicable to
" the system than to the software, or because they were insufficiently defined. The metric
. elements are categorized by applicable criteria.
: AUGMENTABILITY
» . Spare memory fraction
'-E 1-(bytes of memory used/total bytes available)
-

. Spare timing (speed capacity)
;
VX . Is operating system designed so that functions can easily be added or
;J expanded?
f:f . Are the software functions/modules designed so that the span of control
_: (effect) can be increased?
. AUTONOMY
\ . Atomicity: is each software transaction viewed by users and system as
':: indivisible?
x

. Built-in-testing.

¢ .
o I]

DN
-+

]
N

—y Ty - S RO Laen ew B B 2% Bas San S e SC aie bon w5 o
cc.r . N A DA i B AR SR AT A A & St e ie eI R A P S SRCHE ICRaC M ien SO A i fop s A SRt A R Ra A Sl

Od
B ‘.:

o SIMPLICITY
"-': . Is there, in the code's comments or preamble, a self-contained functional flow
{ . diagram (besides text)?

:if: . Are upper and lower bounds for acceptable inputs specified?

- . Is the code apparently free of "tricky" code (code which uses little-known side-
o effects of language features)?

&

» -

N . Is the code structured, in the sense of clear flow of control and lack of go-

to's?

¢J :4

e DISTRIBUTEDNESS

. Total number kilometers of communication links.

%

::.r . Diameter: maximum over all nodes of minimum distance between each pair of
- nodes.

N,

\.

z . Number of nodes (processors).
:::'.S . Number of links.

- . Parallelisability (Kuck's metric)

j'.'-j (Number of independent processors/10 loglo number of independent proces-
?.:j'- sors)

. . Average redundancy of processors

l-; (total number of processors/number of independent processors addressed).

..I

-

" RECONFIGURABILITY

A . Nonstopability: do nodes run on nonstop processors (multiprocessor redundan-
N ::. cy with software control program for graceful degradation)?

\i

-
'y . Dynamic backup: can a data base be dumped while it is being used?
s

o

4

Ej 4-3

(9

L P B B
PR I PO AT IO T S P NI
LR R R

R I A RS SRRy

:.164 s ta Ty PR AR e SRS A SIS e -':
= T
b
" . What fraction of functions can be relocated without alteration to other \‘
v rocessors? S
P! -]
; b
5 . Does the system automatically detect if a node has gone cff-line? o
., - U9
] j: . : o 4
f . File availability: what is the probability that at least one copy of a file R
resides at a site which is accessible to all other sites?
.
! N SPECIFICITY
. . Determinism: are the same outputs always produced by the same inputs?
TRAINING
, f. . Is a user disturbed, so as to be less effective, by:
fi 1) instability, 2) unpredictability, 3) lengthiness of delay, 4) cryptic and
‘ artificially terse messages?
2
ﬂ . Does the system have a "help" function to answer questions for confused
b users?
N VIRTUALITY
“ -
. . Virtual memory: does the system use virtual addressing?
. Relational database: is the database management system relational in the
:: sense of E.F. Codd (Communications of the ACM, February 1982, p. 109-117)
\!
L~
b \'
3
1Y)
A
LS

4 A ‘.‘

s

4-4

NG
et

\ R ALY -u. 'ﬂ‘ ‘. '-._ caa ‘i.:'._ e .‘;.

e

AR W AL AL S Sl Wi T A

¢
3%
159
A5 5.0
W VALIDATION
i
. :;ﬁ: 5.1 VALIDATION OF QUALITY MODEL
PSR4
RN
L{ 5.1.1 Overview of Validation Effort
o .
":.;-,-.f The two new quality factors, survivability and expandability, were selected for validation.
-:~ This selection enabled validation coverage of the majority of new framework elements:
\‘.q
WA 100% of new factors, 100% of new criteria, 100% of new metrics, 78% of new metric
e elements, 80% of new worksheet references, and 78% of new worksheet questions.
fain
&
. The basic steps performed in the validation effort were selecting appropriate projects and
2D g app
“ modules, collecting metric data, collecting quality rating estimates, and analyzing and
,. correlating metric scores and quality rating values.
-
:j The validation approach of RADC-TR-77-369 was followed, wherever possible. But some
A
! of the same problems were found as were reported in RADC-TR-77-369 in which various
‘ metrics could not be evaluated due to uniformity of development standards which did not
-:,,_" permit assessment of the correlation of these metrics with project quality data. (See
-"\' AM.4 and AM.5 in Table 5.3-1.)
et | Y
» .,,. The greatest difficulty in the validation effort was with the quality ratings against which
:;:5 the metrics are to be validated. Quality ratings could only be obtained for factors and
:‘.;: criteria at the project or system level, rather than for individual modules. Therefore, the
a
"N validation effort was necessarily restricted to the internal analysis of metric scores and
to the correlations of criteria scores (for criteria within survivability and expandability)
412 with criteria quality ratings from each project. Nevertheless, such correlations show a
\ positive relationship between quality ratings and metric scores, and thus support the
i addition of the expandability and survivability quality factors to the software quality
o framework. This result, and the fact that metrics could be successfully collected, also
:{:‘ supports the use of the quality metrics methodology with distributed computing systems.
:a
o
h7 5-1
DR

- ™ i\ - ~ . R . - - .
S N AT . e e e
PO CRALNINA SO SN TS VT AT, S i SRy

5.1.2 Selection of Projects for Validation

Four Boeing projects were selected for validation; E-3A, UDACS, B-1 Avionics, and the
Morgantown Personal Rapid Transit (MPRT) system. Although interviews and preliminary
data collection had been conducted earlier on a number of other candidate projects, only
these four projects were used for validation.

The four projects, described below, were selected on the basis of the following criteria:

. Distributed computing is integral to design and operation

. Documentation for the entire life-cycle is available

. Project management and software engineering personnel are available for
interview

. Survivability and Expandability are significant considerations in system design

For reasons of confidentiality, these four projects, in a permuted order, are identified
throughout this final report only by the encrypted designations "A", "B", "C", and "D".

E-3A

E-3A, the AWACS, Airborne Warning and Control System, is a high-capacity radar station
and command control station in a Boeing 707 airplane. E-3A software (the AOCP,
Airborne Operational Computer Program) resides in two embedded IBM 4PiCC2 comput-
ers. The dual 2.1 Mops/sec processors, hot spare arithmetic control units, 3 drums (400
Kwords each), 11 banks of 64K core, and 9 operator consoles are coupled by serial
channels through a hard-wired Interface Adapter Unit (which itself has 2 complete
backups). Each processor has its own event-driven operating system. E-3A was developed
for the USAF, and was modified to an interoperational NATO version. Software in 95%

Jovial J-73 and 5% assembly language.

UDACS
UDACS, the Universal Display and Control System, is an airborne radar station and

command control station in a U.S. Navy P-3 Orion airplane. Three AYK-14 computers
(off-the-shelf CDC 480's also used in the F14) and 4 operator stations are coupled through
a dual serial, polled, MIL-STD-1553A bus. Each operator station contains a CRT, 64
K-words memory, and Intel 8086 microprocessor, 96 software programmable switches,

y O
s " sV, ®n

)

.
.
h
.
.
..
.
w
.
Cal
-

e

.Lt'(ft’!,l‘l

‘.N"'.' "'. '.n

N b A
peleleat

-~

YT
A A

¢

O

2, 4, .
AN

Y.

RN A
[N e

AP

L4

keybcard, and trackball. The highly reconfigurable programmable switches each display
12 characters of 12 x 20 pixels as a dense array of LED's built into buttons. 5000 lines of
PL/! make up the HOL code, and a ground support package targets CMS-2 to the 8086's.
The Royal New Zealand Airforce is the customer.

B-1 Avionics

The B-1 Avionics operational software resides in two offensive computers and one
defensive computer. The computers are linked to sensors, actuator, other computers, and
operator consoles through redundant serial buses (1 megabit). The two offensive
computers are tightly coupled through a high speed processor link. Some redundant
processing is performed, and a degraded mode of operation is possible in the event of
failure of one of the offensive computers. The offensive and defensive computers
communicate via the redundant serial buses. The source code is written in Jovial J3B and
assembly language.

Morgantown (MPRT Phase-II)

The Morgantown cperational software resides in two central computers and twelve station

computers. There are two computers at each location. The computers are configured in
two redundant strings which perform parallel, concurrent processing. Within each string,
one central computer communicates with one computer at each of the six stations through
2400 baud modems. The two computers at each location communicate with each other to
monitor for failures and to synchronize processing. The source code is written in ANSI
STD FORTRAN and assembly language.

5.1.3 Selection of Modules for Validation

E-3A

Modules from E-3A were chosen as follows. One particular CPC was selected which
served a communications encoding function. This CPC was in a survivability-critical
application and was expected to go through several phases of expansion. Timing
information was available for its performance. The modules within this CPC were highly
and intricately coupled to each other. All 12 modules in this CPC were selected for data
collection and analysis. Although they do not necessarily constitute a typical cross-

section of the entire system, they are typical of modules for which distributedness,

survivability, and expandability are innate in the design.

A

.

Fay Yy
i

L,

A‘. '.%

>

X AL

&2,
‘&

AT -
A

c e
'. . -
2" A’J..

-
™
1]

~:

UDACS
Modules from UDACS were chosen as follows. One particular CPC was selected which
performed a graphics function for data from nearly all the processors in the distributed

system. Survivability was reflected in this function as being able to be performed on
either of several processors. Expandability was critical, as new functionalities were
required to be shown in new display types. The modules in this CPC were highly
interconnected. The first 24 modules in this CPC, according to a complete but arbitrary
listing, were chosen for data collection and analysis.

B-1 Avionics

The B-1 Avionics operational software consists of two programs — the Offensive Flight
Software (OFS) and the Defensive Flight Software (DFS). Modules were chosen from the
OFS for validation because this software is distributed between two processors; the DFS
resides in one processor. The OFS performs five major functions: navigation, weapon
delivery, controls and displays, test, and executive. The modules of the navigation
function were chosen for validation because a high percentage of JOVIAL was used and

because the functions performed are typical avionics functions.

Morgantown
The Morgantown operational software consists of four separate programs — Central

Application Program (CAP), Passenger Station Application Program (PSAP), Maintenance
Station Application Program (MSAP), and Executive (EXEC). The modules of CAP were
chosen to be used for validation because CAP performs a greater number of functions and
more general functions than either PSAP or MSAP and because more FORTRAN was used
in the CAP modules, by far, than in the modules of any other program. The major
functions performed by CAP modules are: command processing; data collection,
recording, and display; communications processing; operations management; and opera-

tions monitoring.

54

N

i
< i
e 5.2 DATA COLLECTION
- 2 T
5.2.1 Metric Worksheets M
o :
:'a' Specific metric worksheets were developed to collect data for the factors survivability :E:Lj’
A and expandability. These worksheets, shown in Appendix C, list questions whose answers
. enable computation of values for metric elements. The metric elements are then used to :J
:'.::-_Z compute metrics for all criteria within the software quality factors of expandability an-: L:’_::'
j:.:; survivability. The questions are presented in logically related worksheet categories, ir :
N order to conceptually simplify the data collection task. There are four consecutively o
numbered worksheets, one for each of the life-cycle phases in which data is collected: ’“-:'_
i X
{7 . Metric Worksheet 1 Requirements Analysis/System Level -
"-f' . Metric Worksheet 2 Design/System Level -
o . Metric Worksheet 3 Design/Module Level .
::.) . Metric Worksheet 4 Source Code/Module Level ;
< S
o Since there were four Boeing projects selected for analysis a total of 16 worksheets were :T_?:
completed. The number of lines of code analyzed from each project (worksheet 4) were as
' -":’, follows:
. =
" Project Lines of Code N
__' A 3407
- B 8589 :::'
Y C 3166 C
] D 2353 Byt
R Total 17515 v
3 i
w 52.2 Quality Rating Questionnaires pe
.
A two-page questionnaire, shown in Appendix D, was developed to gather subjective
: quality ratings for criteria and factors at the system level. For survivability, respondents :
' were asked to rate the software for the system on a scale of 1 to 10 (ten highest) il'_Z'
.,‘ according to 6 defined "attributes". Five of the attributes are the criteria within '_"”_'f
e
0
2 5-5
o
~ =

.. T P N
'.-' '\. ~.. ., -“ --‘-.' '.-'l '-"-'4‘1 \
R T . W, JRPE. TN_I GuF Uit U T T T T G B DT TS Oy

.. e e TS Rolas ORI Y P e e A e A e T P S R T e A A R

N survivability, the sixth being survivability itself, although this is not stated on the
j‘ questionnaire form. This allows for two different values of the survivability rating to be
computed. First, the average of the 5 individual criteria ratings may be used. Second,
"'S the survivability factor rating itself may be used.

s For expandability, the rating questionnaire defines 7 attributes and solicits ratings on a 1

- to 10 scale. Six of the attributes are the criteria within expandability, and the seventh is
:: expandability itself. In addition, the questionnaire asks for 2 estimates in terms of

: : manmonths of effort: effort to expand the software for this application and equivalent
7 effort to do the same task from scratch for this application. An expandability quality
x rating may then be calculated with the formula:
>
< R.=1]- Effort to Expand
15 E .

- Equivalent Development Effort

:' This allows three different values of the expandability rating to be computed. First, the

average of the six individual criteria ratings. Second, the expandability factor rating
r itself. Third, the ratio of effort as defined by the above formula.

s. Although the values given by questionnaire respondents inevitably contain bias and
::' subjectivity, these negative characteristics were minimized by means of a quasi-delphi
.-7: technique. That is, several copies of the questionnaire were given out to software

managers and software engineers within each project. The average value of the ratings,
v averaged over all personnel questioned on a given project, can be expected to be more
2 accurate than the values of a single typical respondent. Ideally, the questionnaires should
N be filled out by personnel who have experience with all four of the surveyed projects, but

no such personnel were identified in this study.

o«

A total of 10 questionnaires were completed; three each from projects A, B and D and one

. .t
I A N A R

s &

from project C.

. 5.3 DATA ENTRY
oo 5.3.1 Metric Data Entry Files A
N
oo
\-j.y The handwritten entries from the 16 metric worksheets described in section 5.2.1 (4 i
o projects x 4 life-cycle phases) were entered as raw data files. The raw data files were o
o entered by means of the VI screen editor, and stored on Boeing Aerospace Company's s
‘-:;;: Software Support Center VAX-11/780 computer running under the UNIX operating system. __
e
02 i
Raw data files were converted to matrices of worksheet entries by means of small :
0 formatting Fortran-77 programs and all data entries were checked against the original =3
N ~
f&; worksheets. Data entries were used to calculate metric element and metric values by -
N s"’ means of Fortran programs which implemented the metric formulas given in the Metric ':_:
Tables in Appendix B of Volume II, "Guidebook for Software Quality Measurement".
Metric values were also checked for reasonableness; e.g., in one case a computed metric £
e
5 value greater than 1.0 was traced to an incorrect metric definition formula, which was o
- then corrected. e
.._'. ::\
o Table 5.3-1 shows a summary of the metric values for all metrics within expandability and
'Z;'{; survivability, for all four projects, and all four worksheets. The table contains the -
::-_f minima, maxima, standard deviation and mean values for each metric. o
‘-'J' ~_
i 4
1':‘4 ._:..
o v
.-.\. S
-
.\0. -
_-"' ~"
LY «
N
=N
"'. =
\:‘;. .
e

n
?.-
% Table 5.3-1 Metric Values: All Projects, All Worksheets
\
METRIC MIN MAX STD.DEV. MEAN
™
3 AG.1 .00 1.00 .38 .57
. AG.2 .00 1.00 .38 .59
" AG.3 .63 1.00 .17 .89
- AG.4 .00 .33 .13 .20
N AM.1 .00 .90 .30 .15
. AM.2 .00 1.00 .38 .45
AM.3 .00 1.00 .39 .24
N AM.4 1.00 1.00 .00 1.00
3 AM.5 1.00 1.00 .00 1.00
. AM.6 .00 1.00 .41 .78
P AM.7 .00 1.00 .40 .79
- AU.1 .36 1.00 .23 75
X AU.2 .33 .67 .18 .54
‘ DLI .25 1.00 .24 .84
} GE.1 .07 .50 .24 .22
. GE.2 .21 1.00 .28 74
b MO.2 .00 1.00 .30 .28
" MO.3 .00 .85 .41 .49
RE.1 .33 1.00 .23 .78
x SL1 .00 1.00 .35 .61
SL2 .00 1.00 .50 .75
SL3 .07 .50 .16 .17
5 SL4 .56 1.00 17 .87
% SP.1 .40 1.00 25 75
& VR.1 .00 .67 .46 .56
o
3
2
\.
&
& 5-8

5.3.2 Quality Rating Entry

The handwritten entries for the 10 Expandability and Survivability Rating Questionnaires,
described in section 5.2.2, were entered into the UNIX system in the same manner as the
metric worksheet entries described in section 5.3.1. Because of the smaller quantity of

data, no formatting programs were needed.
5.3.3 Data Entry in "S"

"S$" is a language and system for data analysis which was developed by Richard A. Becker
and John M. Chambers of Bell Laboratories, and released in January 1981 to run under the
UNIX operating system. Data in S is organized into named datasets which are kept in
databases and retrieved automatically when named in an expression. The fundamental
data structure is a vector; other data structures such as matrices are built up from
vectors. Matrices of metric values and quality ratings were read from their UNIX files
into S datasets.

All data analysis described in section 5.4 was accomplished by means of functions in the S
language. Parameters for high-level plotting functions on the Hewlett-Packard 7221 pen-
plotting terminal were entered, so that the regression graphs shown in Sections 5.4 could
be plotted.

5.4 DATA ANALYSIS

5.4.1 Expandability Data Analysis

The data collected from the metric worksheets for expandability related metrics, as
described in section 5.2.1, are summarized in Table 5.4-1. This table contains the average

score of all metric scores for each criterion of expandability, for each of the four

projects. The mean score for expandability is computed as the average of the criteria

scores for each project.

L..' S e
PO

B ', ‘- -, . . v“:
| PSP

T

Table 5.4-1 EXPANDABILITY CRITERION SCORES

PROJECT

CRITERIA A B c D

AUGMENTABILITY AG | .51 .52 .60 .46
GENERALITY GE 46 .46 .94 .43
MODULARITY MO | .44 .36 .16 .28
SIMPLICITY SI .69 .40 .66 .70
SPECIFICITY Sp .82 .40 | 1.00 .77
VIRTUALITY VR .67 .67 .50 .50
MEAN CRITERIA SCORE .60 47 .64 .52

The data collected from the rating questionnaires described in section 5.2.2 are

summarized in Table 5.4-2. This table contains the quasi-delphi quality rating value for

each criterion of expandability for each of the four projects.

The expandability quality

rating is then computed as the average of the criteria ratings (Mean Criteria Rating) for

each project. The 2xpandability Factor Rating for each project is the quasi-delphi quality

rating value for the attribute expandability, taken from the rating questionnaires. The

third expandability rating is calculated in terms of manmonths of effort data taken from

the rating questionnaires; this Effort Rating is calculated from the formula

Effort to Expand

REzl-

Equivalent Development Effort

~

e N e e TN N ’ Tt e e et
'-\.". PO e |
NG TSN re.re

5-10

a Y

''''''''

(O T S G W S

Sad :'n“;';.

LA lrs " .';

PARV R R RN

RS -

P

&
WA

L
« e

4,,
e R

Table 5.4-2 EXPANDABILITY QUALITY RATING VALUES

FACTOR RATING

EFFORT RATING (RE)

PROJECT

CRITERIA A B C D
AUGMENTABILITY AG .34 .57 .70 73
GENERALITY GE .50 .50 .80 .43
MODULARITY MO 47 .80 .65 .63
SIMPLICITY SI .53 .67 .35 .27
SPECIFICITY SP .80 .70 .65 .50
VIRTUALITY VR .30 .53 .75 77
MEAN CRITERIA RATING

The data from Tables 5.4-1 and 5.4-2 was statistically analyzed to compute regression

equations and correlation coefficients to compare expandability scores (metrics) with

expandability rating values (quality levels). The results of this analysis are shown in Table

5.4-3.

N S L T R R T T T TR TR TR T L T LA LA A AR A A i S A S i e Al B s e g

. R
i L
Table 5.4-3 Summary of Statistical Analysis for Expandability
QUALITY RATING 1o d
N Yo d
(- STATISTIC Individual Mean Effort T
= Criteria Criteria Factor (Rp))
. #‘ % ‘ .j j
Intercept .61 .62 .66 -.61 -
D - S
(N et
- Slope -.05 -.07 .04 2.28 o
- Correlation -.06 -.08 -.02 .96

"J Coefficient

~ Y= a+bX

a = Intercept Y = Quality Rating
ﬁ b = Slope X = Criteria Score (Metrics)
"

) The data in Tables 5.4-1 and 5.4-2 and the regression/correlation results in Table 5.4-3 are
_ plotted in Figures 5.4-[through 5.4-4. The X axis represents the expandability criteria

} scores (calculated from the metric scores) and the Y axis represents the various

. expandability quality ratings.

' The results of this data analysis show poor correlation between expandability criteria

scores (metrics) and all of the expandability quality ratings based on individual people
rating the system attributes. The results however, show good correlation (0.96) between

) expandability criteria scores and the expandability quality rating based on the Effort

Rating, R.

s *E

,n

[N
o

5

» Dairiih o
i AR

5-12

-
Wi
.

......

43‘- EXPANDABILITY VALIDATION w’
o ’:,::

N CORRELATION COEFFCIENT = -. 08 R

= »
2 INTERCEPT = .81 2
15 ® o
. ar SLOPE = -, 0S5 - » . e

T

<. 4
S [
- .
o .: [2 .I\-
gL o
., L S
- .
<".- ----.'
R LI
<, [3 o .:_\ ‘
— » 3
o ©
- B
- S S
.'..‘ . h-..-
- P
C . N
- g

0.4
!

Ny
Dt TR

INDIVIDUAL CRITERIA RATING VALUES FOR ALL PROJECTS
»
.
e

el I‘r"g)
o
- &

" ;
b . bo-
" S ke I ! L] A o
> .0 o2 o4 0.8 0.8 1.0 o
INDIVIDUAL CRITERIA SCORES FOR ALL PROJECTS EI;::?
Figure 5.4-1 Expandability Individual Criteria Scores for

Jind%m

All Projects vs. Individual Rating Values for N
All Projects o

v ~
»‘.
~

NSl

CAZAES
o’

EXPANDABILITY VALIDATION

Y

-

.
-

S

.l

RR A
“u e

CORRELATION COEFFICIENT = -, 08

INTERCEPT = .02

SLOPE = -.07

1 I

<«

.'3'.‘. -t

1.0

e°‘c

e ro
133108d A8 SITVA ONLLVY VIMELINO NV

e I

e

AT e ST L LT DL AR

LAt - PN «

()]
>
1]
1]
~
o]
(%)
172}
< o
E & ¢
H o
YV e~
<«
nv
o o0
— S
S & e
nu.l
@ ¥
o ©
x & <
—
«]
< Jwoow
[wi M
[Y
{3F 5
[o
&m o T
o O
[=]
@ &
a ©
w @
(S
N
49)
3 -
(Y]
(4
-
=
00
bal
=
_0
d
00
PP - W IJ\._,‘.? RNAANLS

. - L, T8 " P e . it e 4 N s A, . AN .,..,._..‘ * . A O A
y...‘...... .wn»..............,.......... Q BESE\.‘ w-hv.....-...-_n\x— ,...\~.-...\.....\..\..- '\ S ‘....“..‘........ IS SKARARRENL ALY 0 .\. A X

1.0

EXPANDABILITY VALIDATION
MEAN CRITERIA SCORES 8Y PROJECT
5-15

Factor Rating Values

Figure 5.4-3 Expandability Mean Criteria Scores vs.

&
* o
'] -u RN
o | - M AN
R,
m n ' s K
! ot
z & N
[. oy
- 4
,...L

CORRELATION COEFFICIENT = -, 02

1 | 1 1 S w
o°1 80 90 o 20 00 .
1J3008d A S3INIVA ONILVY ¥01Jvd

P -n ---f\i \i-. M 2 -u- ’- ’nwh.wh-n) \J-‘ * -\ o -' .\ VI\ -o-!-. * .\ - -\ -.. .\ -\ 4-- ; .‘.--..c-l. ' .-l --c nu- - 1.-.{%. -\‘l -J.-\van- 4.. v- -ﬂ~ -‘. ..- -.. -W -- \.o\.‘\. \-\ ’, .\\- [} < c.(. f. et Yy -\.lnl. b
SIRARAN RRNAN N A | RARRRERY ATEONNER ~ NOARATL RASARAD] - A0 DDCE, | CXACRAARA

IS A MR RS A I IR B AL AL R AL L RIS SR A SR S A0 A LRI A S Sl SEp it AR ML s

oy
I &

EXPANDABILITY VALIDATION

-
(]

1.0
1O e N
{ :”.! . "-‘ '.‘ Y

CORRELATION COEFFICIENT = .88

)
v
1y

.
At
[P

oo
2
e

INTERCEPT = -, 01

.
a
P
AR

L SLOPE = 2,20

0.8
",'l >

oy

[] 4
B et
e e e
ENRWNAND: - NN
APEAERENEMIASS - 1 Mg

MAN-MONTH EFFORT RATIOS BY PROJECT

o2

S L | 1 | | 1 T

0.0 02 04 0.8 0.8 1.0 o
MEAN CRITERIA SCORES BY PROJECT

Figure: 5.4-4 Expandability Mean Criteria Scores vs. g
Man-month Ratios :

NERAC I T A gL p A SR ANE S AN B 10 A USRS A O e A N A
o
o~
) 5.4.2 Survivability Data Analysis
‘-J‘
{ The data collected from the metric worksheets for survivability realted metrics, as

described in section 5.2.1, are summarized in Table 5.4-4. This table contains the average

L 4

L. A

score of all metric scores for each criterion of survivability, for each of the four projects.

" A0

The mean score for survivability is computed as the average of the criteria scores for
each project.

e

i

- Table 5.4-4 SURVIVABILITY CRITERION SCORES

- PROJECT

i CRITERIA A B c D
- ANOMALY MAN, am| .66 | .75 | .60 .48
2 AUTONOMY Au| .72 | .61 | .8 .51
;:_f: DISTRIBUTEDNESS DI .84 .68 1.00 .94
o MODULARITY mo| .us | .36 | .u .28
{ RECONFIGURAB. RE .54 71 1.00 .88
v\.“_ F====J._J—$
::f MEAN CRITERIA SCORE .64 .62 .78 .62
;:_

) The data collected from the rating questionnaires described in section 5.2.2 are
-::.j summarized in Table 5.4-5. This table contains the quasi-delphi quality rating value for
\ each criterion of survivability for each of the four projects. The survivability quality
.‘j: rating is then computed as the average of the criteria ratings (Mean Criteria Rating) for

each project. The survivability Factor Rating for each project is the quasi-delphi quality
f;:j rating value for the attribute survivability, taken from the rating questionnaires.
X

5-17

Table 5.4-5 SURVIVABILITY QUALITY RATING VALUES

PROJECT

CRITERIA A B C D

ANOMALY MAN., AM | 1.00 .93 .80 .50
AUTONOMY AU .83 47 .30 .50
DISTRIBUTEDNESS DI .70 .63 .85 .70
MODULARITY MO .50 .80 .65 .67
REL_ONFIGURAB. RE .93 .73 .95 .70
MEAN CRITERIA RATING 79 71 71 .61
FACTOR RATING .93 .93 .95 .68

The data from Tables 5.4-4 and 5.4-5 was statistically analyzed to compute regression
equations and correlation coefficients to compare survivability scores (metrics) with
survivability rating values (quality levels). The results of this analysis are shown in Table

5.“4.
Table 5.4-6 Summary of Statistical Analysis for Survivability
QUALITY RATING
STATISTIC Individual Mean
Criteria Criteria Factor
| ————— — — — e —————— —
Intercept .59 .61 .37
Slope .18 .14 .76
Correlation .21 .15 45
Coefticient
Y= a+bX
a = Intercept Y = Quality Rating
b = Slope X = Criteria Score (Metrics)
5-18
SR LR SRR
A o o A T e S T e e T T T

The data in Tables 5.4-4 and 5.4-5 and the regression/correlation results in Table 5.4-6 are
plotted in Figures 5.4-5 through 5.4-7. The X axis represents the survivability criteria
scores {(calculated from the metrics) and the Y axis represents the various survivability
quality ratings. All of these correlations were positive, but were fairly low (.15 to .45),
with the highest correlation at the factor rating level.

A second set of correlation studies were then conducted using metric data from
Worksheets | and 2 only since there is a greater amount of metric data for survivability
on the system level worksheets. For example, 100% (7 of 7) of the worksheet entries for
the criterion reconfigurability (metric RE.1) are on worksheets 1 and 2; 87% (13 of 15) of
the worksheet entries for the criterion distributedness (metric DI.1) are on worksheets 1
and 2. The concern for survivable software is primarily affected by architecture rather
than details at the code level. Survivability is affected by such things as how processes
and functions are distributed among the nodes, how information/data is distributed
throughout the system, and the scheme for communicating among nodes. Survivability is
not very dependent on details such as the types of constructs used in the code or the
number of comments on listings. (The correlations using scores from worksheets 1 and 2
only were not performed for expandability as this quality factor is dependent both on top-
level architectures and on details at the code level.)

P
P
'.".'l
P

/
l‘l
)

vy

o
—ay

£
TR

RN
L K

L

INDIVIDUAL CRITERIA RATING VALUES FOR ALL PROJECTS

1.0

o
d

04

o2

)
d

SURVIVABILITY VALIDATION

= . 2

CORRELATION COEFFICIENT = .21
INTERCEPT = .50 o

— SLOPE = . 18 . .

-
»

=

e 1] 1 1]

0.0 o2 0.4 0.0 0.8 1.0

INDIVIDUAL CRITERIA SCORES FOR ALL PROJECTS

Figure 5.4-5 Survivability Individual Criteria Scores for
4
All ProjectsvVvs.Individual Criteria Rating
Values for All Projects

5-20

.. - N i o it e i g e S Buba i Jhust St St fhre Jite (s e St e St S s g
3 R RN T e I N A i L A N L I A
ey . "a PR . -t . - - . RN

VRS
»
“ s e,

£ 4
..

[

« s
.

-
pe

4
.

SURVIVABILITY VALIDATION

A, s, 4 Tal
.

&,

AR

AL o N
1.0

-
[4

CORRELATION COEFFICIENT = . 1S5
INTERCEPT = .81

SLOPE = . 14 .

0.8
L

MEAN CRITERIA RATING VALUES BY PROJECT

2,2
o0
F

) 1 ! 1 1
R0 0.0 o2 o4 ae 68 1.0

3{: MEAN CRITERIA SCORES BY PROJECT

- Figure 5,4-6 Survivability Mean Criteria Scores vs.
::?.j Mean Criteria Rating Values

o 5-21

=,

- et - - . ~
. . RO - -
L I Y U T LU T e e e T e et e RS
At N e T T T NS T T A e e T R KRR AN
. Tt ¥ g TPt S R SR A S P SR A T S A R VRIS g IR ST AR WSS Y Y W NC A W)

hd ol e A P A g W g aPy L ArEh Aves ades Sress 4
To. AR A A BRAAA Y A LA EREAGAES DAL AL AL E IO

NG A A A A 3
-‘. ¢.‘ "-
; -

L 0N A
o -7 e
= ——

-".
~ .
. :

e A
:

SURVIVABILITY VALIDATION _'

—y

27

‘4 /‘;‘
1.0

A
=
AN N
AR P .
CORRELATION COEFFICIENT = ., 4S -
D INTERCEPT = .97 -
e :
S o
RN ; SLOPE = .70 -
S [~ -
£.x
"13.' .t
N
.:':':‘ . .
~ -
o, & .
~ T .
N © -
. x S "
Ntk o
NN g 2
T i
N e
S S <<
{ 2 i
\ = .
"o fd i
N 2.
- gd -
\!-'. -
7. -
. g »
! -
.
‘;i g
A g..
i g
l‘:\“ \:._
N ol
N .

A‘.
.
e

e &

- 'S ! | | 1 -
- 0.0 o2 0.4 0.6 o8 1.0 T

MEAN CRITERIA SCORES BY PROJECT ,~;'f-

[N

PR SN A

Figure 5.4-7 Survivability Mean Criteria Scores vs.
Factor Rating Values =

»

. BN
o5 N
oo [N
-~ Vo
. §5-22 v

"
=
>
.
A

The data summarized from only worksheets 1 and 2 is shown in Table 5.4-7.

Table 5.4-7 Survivability Criteria Scores, Worksheets | and 2

MEAN CRITERIA
SCORES

PROJECT

C D

.73 .62

The results of the statistical analysis of data from Table 5.4-7 and 5.4-5 is shown in Table

5.4-8.

Table 5.4-8 Summary of Statistical Analysis for Survivability,
Worksheets 1 and 2

QUALITY RATING

STATISTIC Mean
Criteria
Intercept .08 -.66
Slope .93 2,27
Correlation .58 .81
Coefficient
Y= a+hX

a = Intercept Y = Quality Rating

b = Slope X = Mean Criteria Score (Metrics)

|)

The correlation coefficient, using only worksheets | and 2 metric data, are significantly

higher than using data from all worksheets when evaluating survivability. Again '«

highest correlation was at the factor rating level (.81).

The data in Tables 5.4-7 and 5.4-5 and the regression/correlation results = T..: &

plotted in Figures 5.4-8 and 5.4-9.

.............

........

.........

.....

5-23

PR —

SUFTWARE QUALITY MEASUREMENT FOR leTRéBUTED SYSTENMS

S HD-HLZ7 933
g VOLUME 1(U) BOEING REROSPACE CO SEATT
ROC-TR-83-175-V0L-1

T P BOWEN ET AL JUL

UNCLASSIFIED F3@682-80-C-833@

F/G 872

END

oni

2/2

EE LT ERETYY

==
B
FEEEER

EEEE
FEFE

FRE

r

il
3
=
=
=
B

MICROCOPY RESOLUTION TEST (;HART
MATIONAL BUREAU OF STANDARDS-1963-A

J' I l'. T
8% ~ \- NN -w
: \"’-I-\. NG :'-.' N3 HS! .r\ ‘g\' WALWR .
J L ,' h SO ."" “m f =L A..-—i-f e Tt WL . an e
: 3 Pt ' > . . S ol . o K g A - ov oy ™)
VA "o~ : %

A ! ﬂ.ﬁ.,_""
At L o ‘, .

My oo Pttt s
o ofiad

ity

£

“f"‘;"'

e |

Fove oM

A

FEL -
- >

V%A

MEAN CRITERIA RATING VALUES BY PROJECT

SURVIVIABILITY VALIDATION

°
CORRELATION COEFFICIENT = 0.0
INTERCEPT = .08
el SLOPE - .08 .

6o 02 o4 o 0.8

VENNERTRLSTONS BT

1.0

Figure 5.4.8 Survivabilicty Mean Criteria Scores vs.

Mean Criteria Rating Values

5-24

I A A o~ ~"- - ~ ~ DA
'.":: 'I.:-" o :.:’~ _"- ."\ﬂ}l:'f (\ “ "‘\ "_:. f‘)‘-n' i\}‘&.‘\ }\ :'L\G \H Y\\ \-.j:'\l. S

BN, "‘"- I

Ve .
AT (-l

?1: &9

3

P_
-?-‘

2EM

A ARSI

NN
P

ol

o LA SN

=

Rtk Lo O

e

F ol

Sk

f-d"

,\ﬁ
Ny

~

SURVIVIABILITY VALIDATION

IF

CORRELATION COEFFICIENT = O, 01

INTERCEPT = -. 00

0.0
1

SLOPE = 2,27

o4

FACTOR RATING VALUES RY PROJECT

o2
1

- |

.0 02 0.4 +Y] 0.0 1.0

MENSIAERINS TN ol

6.0

Figure 5.4-9 Survivability Mean Criteria Scores vs. —
Factor Rating Values 'i
5-25 :
Y
b
AR T A (s T T A N L L
- 2:3"& %‘."":"‘ -.-'\"\ AT s TN T
A P R,

3.5 CONCLUSIONS

5.5.1 Expandability Conclusions

The statistical analyses of expandability (metric) scores and expandability quality rating
values support the addition of the quality factor expandability (and its criteria and
metrics) to the software quality framework. The mean criteria scores (average metric
scores) are highly correlated with the quality rating values of the Effort Rating (Rg), as
shown in Figure 5.4-4. For this plot, the mean criteria scores (Mg) from Table 5.4-1 were
used for the x-axis, and the quality rating values based on the Effort Rating (RE.) from
Table 5.4-2 were used for the y-axis. (The Effort Rating is calculated from man-month
effort estimates on the rating questionnaires.) The best regression fit to the data is:

R = -0.61 + 2.28 ME

E
The correlation coefficient calculated for this regression is 0.96, significantly above
random. This correlation provides a high confident level for the addition of the factor
expandability.

(Note that the y-intercept is not equal to zero. Therefore, an attempt to find a best fit
to this data, while forcing the line through the origin (with y-intercept equal to zero)
would yield higher residual error than this fit.)

A second conclusion that can be drawn from the statistical analyses of expandability is
that the Effort Rating, based on man-month effort estimation, is probably more useful for
validation than the Mean Criteria Rating or Factor Rating, both based on an estimation of
attributes of the software as judged by an experienced observer. The Effort Rating
yielded the highest correlation (.96) with mean criteria scores (metric scores). The
correlations for the Mean Criteria Rating and the Factor Rating were near zero. This
indicates that metric scores and these rating values are essentially uncorrelated— little
better than random. Expandability validation plots and a summary of the analysis are
found in section 5.4.1. o '

5-26

T s e L A $on e

12 :

i y

by y .-dl N
. :

_‘;-;; 5.5.2 Survivability Conclusions :

-

v The statistical analyses of survivability (metric) scores and survivability quality rating

f‘: values provide a high confidence level for the addition of the quality factor survivability

g (and its criteria and metrics) to the software quality framework.

LAy

b As shown in section 5.4.2, all correlation coefficients attained when using data from all

four worksheets in validating survivability are positive with a range of .15 to .45. In
comparison, the range of the correlation coefficients attained when using data from only

e worksheets | and 2 is from .58 to .81. This indicates that the data analysis involving
ey worksheets 1 and 2 supports the rationale for pursuing this approach.
However, researchers on this contract feel that the quasi~delphi questionnaire approach s

i useful, but not conclusive. An improved method of estimating survivability ratings
(perhaps one which includes probability data or effort ratios in man-months) could
improve the confidence in the validation of survivability.

oL

s 5-27

LAt g g A Rl i @ A b o Bt M] B Nt D N A R B L AT SR (A5 AL S LA A AEALALI L AET AL RN

A
% SECTION 6.0 2
& RECOMMENDATIONS FOR FUTURE RESEARCH =
B .'s
{ 61 QUALITY FACTORS AND CRITERIA ~
B 3
iy 3
o 611 Ultrastability
ﬁ"ﬁ;v A suggested new criterion is ultrastability. This criterion relates to "the capacity of a "
; . system to withstand perturbations which have not been forseen by the designer." (BEE 75, -
3N p.108) This criterion, by its very definition, cannot be evaluated by the system designer %
. until the design process is complete, and the maintenance process initiated. It would fall g
333 within the factors of survivability, reliability, and maintainability.
8 !
n 612 Prototypesbility %!
Y -~
\% A suggested new criterion is prototypeability. Prototypeability measures the extent to -j:j
%l; which a system design can be developed through a sequence of executable prototypes ;\
ER{;‘: possessing increasing functionality, with more and more implementation detail and ..

[4

alternative designs being the rationale for the successive prototype systems. The question

=
»

! is whether or not the design can evolve with the implementation, and whether or not the Q
);:: design as implemented can support design decisions. The prototype approach is a special _N
g, case within the distributed system life cycle, where the system passes several times

- through each life cycle phase. -
o ~
ia‘a .pe ‘.
) Advantages of Prototypeability "
N >
o Design can evolve, in ways not limited by initial requirements. Competing imple- "
i O :
j‘*‘ mentation approaches are repeatedly examined. It is easy to generalize require- ',.
o ments and meet the newly generalized requirements in a new prototype system. It 3 !
oM o

A¥ takes less time to backtrack to an earlier phase of the life cycle. Initial prototype ~

i systems become early starting points for maintenance and enhancement processes. iy

e -
tﬁj z
LA s
: :Z_, Disadvantages of Prototypeability ‘
e There may be language or system changes which require additional training or
N *:: .t-
X \: :.'
?‘» ! 6-1 .::
A x

Pl e - oM u e~ me e . . -y .. . -~ .
N S S \.1‘ D N % .-. . o e -_v-.’:. ,{_ ~.'\".‘J\' -h.“ ..-ﬂ...) <'.-'-‘..-$q-v" c e ...-._ -._-.- . RN s et o *. - e LI -
e N N N P Fe L e Dy e e e e D e LS e D e I e e e N e s el
Soleaal A AR S e T N LY R RN

P), 0 X CA ALY - -

~
'w e e .
Yo s, ~

o

personnel. Since the design is not fixed, it is hard to implement and administer the

system efficiently. Separate languages for prototypes and production versions may
require a software translation phase in the life cycle. There is likely to be a shift

% from an interpreter-based approach in prototypes to a faster compiler-based
j ‘ approach for production. It is difficult to avoid changes and interruptions, since the
prototype approach is advertised to adapt to these so quickly.
A
i 6.1.3 Distributedness, Integration, and Transparency
t Fusi and Sommi of IBM Italy (FUS 81) draw distinctions useful to our definition of
1 distributedness, and to our discussions of evolveability and the distributed system life

:,: cycle.
“;f: "to use the term 'computer network' as a synonym for distributed system is quite
7. misleading. In fact, a computer network provides nothing more than the basic
communication between computers, which is a necessary but not a sufficient

ﬁs ingredient to create a distributed environment.... When processors communicate

A ;‘ using a shared storage and some special instructions, the system is a multi-processor

system. When memory is not shared and the communication between processors is

Jo obtained by using interconnection media like, for example, I/O channels, coaxial

\“s cables, optical fibers, teleprocessing links, satellite links, public data networks, the
2-: system may more properly be defined as a Distributed Data Processing (DDP)

~ system. If we define 'integration' the capability of accessing a set of interconnected

o, data processing elements as a single system, a DDP system offers a lower degree of

"'(: integration than a multi-processor system, and more or less presents the same

Z' M problems as far as distribution aspects, but (a) it is a system which covers a greater

? generality of aspects of distribution (both local and geographically dispersed proces-

. sors to be interconnected) and (b) it offers the possibility to move smoothly towards _
;.fg processor integration. This means that a DDP system may evolve to a fully distri- :‘_:':<
! j buted system (complete integration) following the evolution of the communications E\-,
media (higher bandwidth etc.) and the evolution of user applications." E‘}
~ They also define "Transparency" for a distributed system of virtual machines:
; &
" (@) the ability to utilize the same programming interface both for local and
; remote communications

33

AN]

6-2

NAT S T

o
Y Pt 1

P
=4

"{}‘
»

q.,..,..«.._..,;.
o PO IS S
SRANY. e

prs
(3
Iy

TR

2.

‘}
Aoy A
P W

4
" -

b+
-f5

- Yy,
A

<
L

AN

2 |,

5
" distributed computer systems with high survivability requirements. This, the virtual ring
28/
architecture design, is described in Volume III.
"
o e
1;“
239
3 =
v
Al
LY (A S L SARALRLN ; Yo’ - J a et ., RO A-;._-.__:. S -‘ _-'...-’.‘ " . o "-.‘.-.'.'-:,'.'_’."_'.:'f,‘-'_ I S .y
AL ALY, > ™ ; S WAL R RIS I IRAENIIALE YA YL SNSRI ARV

(b) the possibility to map remote communications on different transmission
subsystems without user involvement

6.1.% Parallelism vs. Provability

Hoare and Chen (HOA 81) introduce a programming notation to describe the behavior of
groups of parallel processes communicating with each other over a network of named
channels. Denotational and axiomatic definitions are aimed towards a method for proving
the correctness of parallel programs. This ambitious attempt allows some non-
deterministic program assertions to be proved, but fails to show whether or not the
program will freeze into a deadlock state. It seems clear, therefore, that automated
methods for the design of distributed systems cannot yet be expected to validate the
correctness of particular parallel programs. Thus, for distributed systems, testing and
validation can be much more difficujt than for sequential systems whose behavior may be
mathematically modelled in terms of denotational semantics.

6.1.5 Responsiveness vs. Consistency

Kamoun, Kleinrock, and Muntz (KAM 81) discuss integrity and consistency issues for
distributed databases. They present a mathematical analysis of Le Lann's ticketing
method of concurrency control for fully redundant multiple copy distributed database
systems, which is being implemented in the Sirius-Delta Project at INRIA (Institut
National de Recherche en Informatique et Automatique, France). The scheme requires
updates at each site to be processed in the order of origin, as opposed to the order of
arrival. The characteristics of variable communication delays in the network affect
performance. One goal of this analysis is "that some analytical quantitative tools become
available to help identify performance characteristics of the various schemes" for
concurrency control. It is perhaps too early to define criteria or metrics for this, but a
comprehensive survey of concurrency control algorithms may be found in (BER 80)
(Bernstein,P.A., and Goodman,N. "Fundamental Algorithms for Concurrency Control in
Distributed Database Systems", Tech.Rept. CCA-80-05, Computer Corporation of
America, 15 Feb 1980) One scheme for concurrency control is of particular relevance to

LR -‘-_ .\‘ R ‘.
..‘_.-‘\- BN

o« a .
)

.« &
.~
.

PO s

o

.i:l""t'.'{' .

»

i e 4
)
s

Py s
'
]l
-4»4

;

¢ TE R
bS]
A

k,‘_.?

LAY L Y LML il A AR A AR e A S W T LT T T T T e e .

6.2 CENTROID OF A DISTRIBUTED SYSTEM

There is a gradation between highly centralized and highly peripheralized distributed
systems. There is also a continuum of different configurations of dispersion in a
geographically dispersed distributed system. A novel means of representing this is the
Centroid of Computation. A related concept is the Computational Moment of Inertia,
which may be proposed as a step towards a quantitative measure of distributedness. The
following discussion leads up to formal definition of these constructs.

As Metcalfe and Boggs explain (see reference below):

"One can characterize distributed computing as a spectrum of activities varying in
their degree of decentralization with one extreme being remote computer network-
ing and the other extreme being multiprocessing. Remote computer networking is
the loose interconnection of previously isolated widely separated and previously
monolithic and serial computing systems from increasingly numerous and smaller
pieces computing in parallel. Near the middle of this spectrum is local networking
the interconnection of computers to gain the resource sharing of computer network-
ing and the parallelism of multiprocessing".

First, consider the special case of a distributed system which consists of precisely two
processor nodes connected by a straight-line communications link. If the two nodes have
identical performance, we may model the system behavior as a spacial average, consisting
of one processor with twice the performance of the two original node processors,
considered to be located halfway between them, in the center of the communications link.
Similarly, four identical processors located at the corners of a square of links may be
modeled in some aspects as one processor of four times the unit performance, located at
the center of the square. Of course, this neglects the very distributedness of the system.
Any information regarding communication delays between processors has been lost, as has
information relating to real-time asymmetries in processing.

If two non-identical processors are located along a communications link which is straight
and of unit length, we may locate the single Virtual processor at a point between the two
whose distance is a weighted measure of the relative performances. For example, a
processor of unit power and a processor of nine-times-unit power connected by a link of

6-4

'."(—r' o

¥,
dead

.
..l ‘I (]

L _Jhndih omunsl
-, .

—— TR, Vg o
Wfﬂ"‘lﬂ.’.l) T R T o LT, T et Ty A TR INTN

ten units length may be modeled as a virtual processor one unit from the larger processor.
From this location, the products of distance and power in each direction are equal.

The determination of the centroid of computation, given a planar distribution of
processors, is formally the same as determining the center of mass, where mass plays the
role of computational power. One benefit of this is to indicate where, geographically, the
"effective" center is of a distributed system.

This model may be extended to model the degree of geographical centralization or
decentralization. The procedure is to, first, locate the centroid of computation. Next,
take the square-root of the sum of the squares of the products of distance from centroid
of computation to each processor and the power of that processor. This number will be
smaller when the more powerful processors are near the centroid of computation, and
larger when the more powerful processors lie at the extremities of the distributed system.
This comparison remains valid between two distributed systems of the same maximum
distance. This metric is analogous to the rotational moment-of-inertia.

These ideas need to be strengthened and formalized to be of greater applicability to the
study of distributed computer systems. One problem with the above analysis is that the
DISTANCE between two computers is not the sole measure of their "effective" distance.
It would be valuable to include the TIME it takes to communicate between two processors,
and the WIDTH of the channel in bits-per-second. We therefore, define the VIRTUAL
DISTANCE (VD) between two processors:

VIRTUAL DISTANCE between processor I and processor J = VD(I,J) = the TIME it
takes to transmit one bit from I to J, in the shortest possible path = (communica-
tions delay from I to J) / (channel width in bits).

Actually, taking the speed of light into account, we can correct for very long geographic
distances as well. The following formula shows the relative contributions of inherent
communications delay and transmission delay. For speed-of-light, of course, one may

substitute the appropriate propagation velocity if lower.

.

S

PRI S ST WP N W A Y

A VD = (__geographic distance)2 + (time-to-communicate-1-bit)2
paC! - 2
: (speed-of-light)
h
; N Metcalfe and Boggs ("Ethernet Distributed Packet Switching for Local Computer Net-
‘ works", Robert M. Metcalfe and David R. Boggs, Xerox Palo Alto Research Center,
B Communications of the ACM, July 1976, Vol 19, No. 7, p. 395) consider a related imeasure
\Q‘V:
:’.'E; "The product of separation and bit rate, now about 1 gigabit-meter per second
.‘a (1 Gbmps), is an indication of the limit of current communications technology and
o can be expected to increase with time":
%
s_f.?;f Activity Separation Bit Rate
:-":l
i Remote networks 1C km 0.1 Mbps
oo Local networks 10 - 0.1 km 0.1 - 10 Mbps
° Multiprocessors 0.1 km 10 Mbps
L) ':‘
"‘5_‘
We can also define computing power in terms of COMPUTATIONAL MASS. The
?'j COMPUTATIONAL MASS (CM) of a computer is the number of bits processed per second.
§ More exactly,
Vo,
" COMPUTATIONAL MASS of PROCESSOR I = CM(I) =
NI (Operations-per-second) X (Number-of-bits-processed-per-operation)
ﬂ.\
S (i.e. 1 Megaflop with 32-bit words means CM = 32,000,000)
) N The measurement of “"operations-per-second" is difficult itself, as it can be made only
<
N with respect to some benchmark software which drives the system through some SN
N distribution of operations. It is difficult, usually, to make such comparisons between :
) processors manufactured by different vendors. In this discussion, we assume that such a
.,:’ benchmark environment exists, and that different processing powers may be compared.
X |
NG Continuing our analogy with the elementary physics of kinematics, we substitute ’
8 g
= VIRTUAL DISTANCE for distance and COMPUTATIONAL MASS for mass in the conven-
:‘;: tional formulae for centroid, moment-of-inertia, etc. in physics.
~
7
&
o

- - . ,Y -
e P o
o).‘:_..\ N *

. . " ..f

A% &

LA

3

XXX

7k
L -

%
<2
.t

B

Lk S sl it g B i S A A e B e e A A A A YA A AR

VIRTUAL DISTANCE is not quite like geographical distance, which forms a euclidean
metric space. VD satisfies 3 of the 4 axioms of a metric space:

VD(i,i) = 0

vD(,j) = 0 i=j

VD(i,k) equal.or.less.than VIXi,j)+VD(j,k) triangle inequality
but VD(i,j) does not necessarily equal VD(j,i) consider half-duplex

Because Virtual Distance is not symmetrical (VD(i =/= VD(j,i)) the representation of the
distributed system in terms of nodes and links technically a "directed graph" with
weighted vertices (nodes) and arcs (links).

The VIRTUAL CENTER of a distributed system, not necessarily the same as its
CENTROID, is the processor with the minimum distance to all other processors.

CENTER(i) if.and.only.if (for.all j not.equal.to i) (there.exists k such.that)
(VD(i,k) less.than VD(j,k))

If we wish to add more processing power to some existing processor in a distributed
system, for example, it makes sense to add it to the CENTER processor so as to minimize
the Virtual Distance to all other processors which may need to indirectly access that
power. We can then define the RADIUS of the systems:

RADIUS = Maximum (over j) of VD(i,j) where CENTER(i) = True

The Radius is therefore one measure of distributedness. But it is not yet what we want.
The reason is: such a measure of distributedness only takes into account the "worst case"
of the greatest Virtual Distance that can be found between any pair of processors. What
is missing here is representation of how closely the typical Virtual Distance between
processors approaches the worst case. Clearly, there is a difference between a system in
which ALL processors are far apart, and a system in which almost all processors are very
close except for one remote station. We need a formula which considers all links and all
nodes, to be able to distinguish between this and other cases.

We can define our measure of Distributedness in terms of the "computational moment of

.." ."l T

N 1=
o
AR
LA

b

! I.-l' " l' A .
wn G Ay ARl

. .-

e
s

.I .l 'l L]

-
e

‘a'ala

]

K A e e e |
b o
inertia’ of the system with respect to the CENTER:]
N :
cl = EVD(], D2 x CM() where CENTER(i) = True
and N = number of nodes
j=1

What we have now is a single number which sums the contributions of all the processors.
This function is linear with respect to the Computational Mass (power) of the processors.
and non-linear with respect to the Virtual Distances from the Center (with an emphasis on
the most distant processors). The function is zero for a uniprocessor, and larger as the
Virtual Distances between processors in a distributed system increases. It is therefore

useful as a measure of distributedness.

There are a number of additional aspects of distributedness which need to be incorporated
into this model. For example, the interface with human users. What is the computational
power of human operator in such a system? What is the virtual distance between a person

and the various types of terminals?

When processors, sensors, or communications links are moving (as with space-, air-, or
sea-borne embedded systems) how do these equations change with time? How does the
measure of distributedness change in a system whose processors appear (when the system

is expanded) or disappear (hardware failure) or change their connectivity (reconfigurabil-

ity)?
o e, AL N O a e -“- A ‘.'.. -0
S R A AR R T T RPN A S i Y A LS e
R YW KR AP, LAY P VIR R A ALY \(‘; L W VR WL S W Sl NN \‘.L' [NV ST S|

h ‘.‘.‘.'-:-M s %

b

AR,

.
-

_—
»
0. '.

se i o
» »
’D.D A'A') 4

.
']

" ,’)< -'_ t’.’_ ".

l..l

.

[RESES

P | AR

. 0
-
-

* '&i

a
o’ 8’

a%a" s s

Y YOO

6.3 REFERENCEFS FOR FUTURE RESEARCH

Recent references in the literature of Distributed Systems which emphasize system
evaluation methodology, and which may be further examined in the next phases of this

research include:

(A & 3J) Anderson, George A. and Jensen, E. Douglas, "Computer Interconnection
Structures: Taxonomy, Characteristics, and Examples", ACM Computing Survey, Dec.
1975

(BAL) Balkovich, Edward E., "On the performance of decentralized software", PER EVAL
REV 9:173-80, Summer 1980. Reports on performance measures for decentralized
software written in a programming language for distributed computer systems. 16

references.

(BIE) "A Performance Tool for Design and Installation Support of Distributed Database
Systems”, J.Bieber & S.Florek, DCS 440-447

(BNL) Locanthi, B.N., "The Homogeneous Machine", Technical Report 3759, Computer
Science Department, California Institute of Technology, Pasadena, CA, Jun. 1980

(CHW) (Chu, W. and Chew, P., "Computer Networks: A Tutorial", IEEE Comput. Soc.,
New York, 1980)

(COD) (COD 82) Codd, J.F. et. al., "Data Base Debate", Computerworld, Sep. 1982, p. 14

(COF) Coffman, E.G., Gelenbe, E., & Plateau,B., "Optimization of the number of copies in
a distributed data base system", PER EVAL REV 9:257-63, Summer 1980. Considers the
effect on system performance of the distribution of a data base in the form of multiple
copies at distict sites. 4 references.

(DCS) (DCS = Proc. Ist International Conference on Distributed Computing S);stems,
Huntsville, Alabama, 1-5 Oct 1979, IEEE 79CH1445-6 C)

......
..............
............

&

ke ,

(DCS2) (Proc.2nd International Conf. on Distributed Computing Systems, Paris, France, 8-
4 10 April 1981, Computer Society Press, IEEE No.81CH1591-7)

;., (DSI 82) Strategy for a DOD Software Initiative, Dr. Edith Martin, Deputy Undersecretary
‘ of Defense for Research and Engineering (Research and Advanced Technology), 1 October
8 1982

) (GAU) Gausnell, William A., "Optimizing a distributed processing system", SMALL SYS
3 8:20-3, Oct 1980. Recommends ways to work towards an optimum system based on
. previous experience, and on methods currently being used at Bell Labs.

3

(GOK) Goke, R. and Lipovski, G.J., "Banyan Networks for Partitioning on Multiprocessor
Systems", Proc. Ist Ann. Symp. Computer Architecture, 1973, pp. 21-30

PeteTatatala'ed

(HOA) Hoare, C.A.R. and Chen, Z.C., "Partial Correctness of Communicating Sequential
) Processes", DCS2, 1-12

- (LAR) (Larson, R., "Tutorial: Distributed Control", IEEE Comput. Soc., New York, 1979)

(KAM) Kamoun, F., Kleinrock, L., and Muntz, R., "Queueing Analysis of the Ordering Issue

: in a Distributed Database Concurrency Control Mechanism", DCS2, p.13-23

)

A

‘ (LES 80) Lesser, V., "Working Papers in Distributed Computation—I Cooperative Distribu-
¥ ted Problem Solving", Computer and Information Science Department, University of
' Massachusetts at Amherst, 'A"mherst, MA 01003

(MAM) Mamrak, Sandra A. "Sizing distributed systems: Overview and Recommendations",
NTIS, may 1980, 25pp, PB80-184377. $5.00. Presents an overview of sizing techniques,a
brief discussion of the factors that affect choosing one or a combination of techniques,

and a set of recommendations for choosing tools for sizing distributed systems.
q (MAU) (Mauchley, John; Personal communication to J. Post, Philadelphia, PA, June 1978)

(MCG) (McGlynn, D. R., "Distributed Processing and Data Communications", Wiley-
Interscience, New York, 1978)

6-10

\

%S - D b A s L e e e e
\-3' " ’) ’:' ‘.{' ML 3:\33 :ﬂt{ NInd e \\‘}‘\\ RV R AR
' . N f ‘. « . - - -

! .A"\)'\«‘.A. j ‘- RS .\v

_. 2 RN Tk Bk B Rl A B (RA“ELE S S ‘A IR BORd A Al R I R R AR AR AR I N B A M D S Sl iy
o IR0
-y -,
E-r' :'f\
:.é (MIT) "Evaluating the Trade-off Between Centralized and Distributed Computing", :
h L.Mitrani & K.C.Sevcik, DCS 520-527
SN (PRE) Preparata, F.P., and Vuillemin, 3., “The Cube-Connected Cycles: A Versatile :&f
I Network for Parallel Computation" Comm. ACM, Vol. 24, No. 5, May 1981, pp. 300-306) ‘;; ‘
\ »
" (RAM) Ramamoorthy, C.V., "The design methodology of distributed computing systems", '.’.
:L:: NTIS, May 1980, 101 pp., AD-A086 690/5. $9.00. Develops performance evaluation
\‘~ techniques for asynchronous concurrent systems using the Petri net approach. Analysis e
L techniques for deadlocks in asynchronous concurrent systems are explored. A need for
ol adaptive reconfiguration techniques is established along with necessary and sufficient '
] :';E: conditions for reconfigurability
) (ROT) Rothnie, J., Bernstein, P., and Shipman, D., "Tutorial: Distributed Database ~
- Management", IEEE Comput. Soc., Los Alamedos, California, 1978
E },-
\ (SCH) Scherr, A.L., "Distributed Data Processing", IBM Syst. J., Vol. 17, No. 4, 1978, ':'

p.338

’

] .
. 2
DO

(SEG) "A Majority Consensus Algorithm for the Consistency of Duplicated and Distributed
Information", J.Seguin, G.Sergeant, P.Wilms, DCS 617-624

h;

Ll yagn,

P VN A ALY
v

o

’

(SIE) Siegel, M.J., "A Model of SIMD Machines and a Comparison of Various Interconnec-

2

] O,
- L] ..
) tion Networks", IEEE Trans-Computers, Vol. C-28, No. 12, Dec. 1979, p. 907-917 :-.'?_
NG
27 5
Sa (SMI 77) Smith, R. A., "The Contract Net: A Formalism for the Control of Distributed s
e Problem Solving", 5th International Joint Converence on Artificial Intelligence, Cam- e
o bridge, Massachusetts, 1977

: ;‘_‘

(SPE 81) (Sperry, Dr. Roger; personal communication to J. Post, Caltech, 1973)

'-,;

N (STN) Stone, H., "Paralle] Processing with the Perfect Shuffle", IEEE Trans. Computers,

VOl- C-ZOQ NO- 2. Feb- 1971, pp- 153'161

BOOOL TN &4 |

o 0

\‘;t

Py

Lo

6-11

A4

.'-.Tf

) _ v X = ev.P LN v, A et e T i A 8 AN AN AL AL S AR YA A A [Sk RENRE A A S A
7
Pt
LY
oY

(STZ) Seitz, C., and Hewitt, C., personal communication cited in "A Survey of Highly
Parallel Computing", IEEE Computer, Jan 1980, ref. 60, p.23

-

-

(SUL) Sullivan, Kenneth M., "Does distributed processing pay off?", DATAMATION
26:192-6, Sep 1980. Compares the costs involved in running a job on a large scale

A

222

centalized mainframe to the costs of running the same job in a minicomputer dedicated to
that task in a distributed processing environment.

o
25
, 3'.' (SVO) Svobodova, Liba "Performance problems in distributed systems.” INFOR 18:21-40,
Feb 1980. Examines the performance issues involved in the decision to use a distributed
. system, performance problems that arise in operating such a system, and the characteris-
e tics and implementation of the needed performance evaluation tools. 40 references.
2
1
‘iiﬁfgf (SYK) Sykes, David J., "The economics of distributed systems", COMPCON p.8-15, Fall 80
2y Discusses computer price/performance data communications, systems availability, and
5 ; database replication. A hierarchically distributed transaction processing system and an
Wy . .
) equivalent centralized system are compared. 10 references.
o
' (TAN) Tanenbaum, A. S., "Computer Networks", Prentice-Hall, Englewood Cliffs, New
¢ Jersey, 1981
N,
-}3
bE) (THE) (Theirauf, R. J., "Distributed Processing Systems", Prentice-Hall, Englewood Cliffs,
New Jersey, 1978)
%
7 (THU) (Thurber, K., "Tutorial: A Pragmatic View of Distributed Processing Systems",
ko IEEE Comput. Soc., Los Alemedas, California, 1980)
;Y
- (WU) Wu, Chuan-lin, & Feng, Tsu-yun. "A software technique for enhancing performance
;Z-Ej of a distributed computing system", COMPSAC p.274-80, 1980. Demonstrates a software
'::l technique to effectively match the task execution and a distributed architecture. 17
) references.
2
NR
O
oM
o
oS
6-12 :'_E
e T A R R gy

PEN N MG AR
RN o N AN

,\.u‘..\.,‘ .n-nnsu 0%e%, 5 .y (AT
BRI Y S BT § PSS A

KA

APPENDIX A
BIBLIOGRAPHY
(The contents of this appendix can be found in Volume HI).
A-1

A < Y A y RO e % S o S BEL Y " - v : - N
O RANAAAL R A N I L TR S e e,
Ladaaila ot 7 A RN miin | EAO | IR A

APPENDIX B
GLOSSARY OF KEY TERMS

(The contents of this appendix can be found in Volume IH).

€« _8 8 . " W
Ay ('.."A..'i b ."-' 2

t

P
AR N l.il?

s
.

o
s v % 0 WM
.‘;,,.-"‘.,‘,

[T)
2,800
a4 ¥

B

| I N]

i

qA s~ # O P 5 5 ¢gn
[B U I

R N s
o’ ol

\
1'-'-‘

"y '\
AR
s‘,\ 1. -..;..\. '*\. ~

N X}

44J*H.414 1-““» x-lll - oTal - - \\\\\d\l
oy LA ., S . Sl 4] f
> . -f-a. ..-.-!-i”.-u.nnﬁnh 8 . A . . -) . e S | ' -.\1\.\-\\.

APPENDIX C
VALIDATION WORKSHEETS
C-1

. L& . P . 7 = . *-\,w
A »W S Y et ,..L.)-Wi ..l?:\.\h.. : 7

LA

Ll

- PRI F L

.

|_MEIRIC WORKSHEET | SYSTEM: DATE;
RESU!REMENTS ANALY§I§‘SY§TEM LEVEL __ NAME: INSPECTOR:

1.1 STRUCTURE (RELIABILITY, MAINTAINABILITY, VERIFIABILITY, FLEXIBILITY, REUSABILITY
EXPANDABILITY, SURVIVABILITY, PORTABILITY, INTEROPERABILITY)

.-

P

et
.

.l .l
i

€ v e e, -
LN

M .
PR LA

"

Is an organization of the system/network provided which identifies all software func-
tions and functional interfaces in the system? DL.I(1)

Number of major functions. SI.1(2)

Are there no duplicate functions? S1.1(2)

Is there a definitive statement of the requirements for the distibution of information
within the data base? DI.1(3)

Is there an organization of the data base provided which identifies the types of system-
level information and the information flow within the system? DI.1(2)

Is there a definitive statement of requirements for code to be written according to a pro-
gramming standard? SL.&(17)

Is there a definitive statement of requirements for processes, functions, and modules to
have loose coupling? MO.3(1)

Is there a definitive statement of requirements for processes, functions, and modules to
have high cohesion? MO.3(2)

-

s NSO

!

c~__l‘

L%

)

»”
4

TOLERANCE (RELIABILITY, SURVIVABILITY)

)

.

Are there definitive statements of the error tolerance of input data? AM.2(1)

Are there definitive statements of the requirements for recovery from computa-
tional failures? AM.X1)

Is there a definitive statement of the requirement for recovery from hardware
faults? AM.&(1)

Is there a definitive statement of the requirements for recovery from device
errors? AM.X1)

Are there definitive statements of the requirements for recovery from communication
errors? AM.6(1)

Are there definitive statements of the requirements for system recovery from node
or communication failures? AM.7(1)

1

&

ofals

o
%

L)
2 e

S I
R P
e

B4

* 2 New, ** z Modified

..-‘.' . RO s - N . . IR -
by i ". - L . -
~ & o . N

L A S AN
L] -_' “~

i A re

e

Y P YN
CAA

v,g
L=y

>4

b

a

NN

P!

e

|

? T ”~
A 45‘ VA

by <
N
>

LS R S o i A S 4 e Sl oL AU 4. I M Rl N < e ¥ w P A B Ak S B RAUI AL Sn R Y

| METRIC WORKSHEET | SYSTEM; DATE;
. REQUIREMENTS ANALYSIS/SYSTEM LEVEL _ NAME: NSP) :

1.6 CHANGEABILITY (FLEXIBILITY, EXPANDABILITY)
1.* s there a definitive statement of requirements for spare storage capacity (memory and
auxiliary storage)? AG.1(2,3) YN
2.* s there a definitive statement of requirements for spare processing capacity? AG.2(3) Y|N
3.* Is there a definitive statement of requirements for spare 1/O and communication channel
capacity? AG.¥1,2) YIN_
4.* s there a definitive statement of requirements for interface compatibility among all the
processors, communication links, memory devices, and peripherals? AG.4(1) Y [N
3.% s there a specific requirement for providing performance/price information for enhance-
ment trades? AG.%(2) YN
6.* Do specifications identify new technology tradeoff areas for software? AG.4(3) Y N
7.% Do software specifications include requirements for the criteria of the quality factor
expandability? AG.4(s) YN
1.7 SYSTEM INTERFACES INTEROPERABILITY, SURVIVABILITY)
6.* Are processes and functions separated as logical "wholes" to minimize interface complex-
ity? AU.I1) YN
7.% Are there specific requirements for each CPU/system to have a separate power source?
AU.21) Y HN
8.* Are there specific requirements for each software scheduling unit to test its own opera-
tion, communication links, memories, and peripherals? AU.2(3) YN
9.% Are there specific requirements for the software system to include a word processing
capability? AU.2(3) v |n
10.* Are there specitic requirements for network communication capabilities in the event
of failure of a node or communication link? RE.I(]) Y IN
11.# Are there specific requirements for a node to rejoin the network when it has been recov-

ered? RE.1(8)

« 33
o

‘s Y

N,
Vet

TSR TR R TR TR TIRTR TR TR A IR TINB TR TN AT T ATR TR T AT e TR T w T e T T ATy AT e TN LY ALY o

| METRIC WORKSHEET | SYSTEM: DATE:

TS A Y Y \j NAME: INSPECTOR:

1.8 DATA BASE (SURVIVABLLITY, USABILITY, INTEGRITY, EXPANDABILITY, CORRECTNES:
RELIABILITY, MAINTAINABILITY)

1.* Is there a definitive statement of the requirements for maintaining data base integrity

under anomalous conditions? RE.1(2) YIN
2.* Are there specific requirements for file/library accessibility from each node? DI.1(4) YN
3.% Are there specific requirements for a virtual storage structure? VR.I(1) YIN

1.10 INSPECTOR'S COMMENTS

Make any general or specific comments that relate to the quality observed while applying th
checklist.

* /N

3 'o +
NESTAIS
"I

v o’

~ v "

3 TEN R R R AN VL ., Wk e e A A A A S I e e A A S A A A e “"

», RS
>, o
~gp
4 «,
AN et
R '_.:'
v =
L R
. .
. A 4
L) W
RS b

5 .
33 METRIC WORKSHEET 2 SYSTEM: DATE: o
DESIGN/SYSTEM LEVEL NAME: INSPECTOR: RN

‘ v
2 2.1 STRUCTURE (RELIABILITY, MAINTAINABILITY, VERIFIABILITY, FLEXIBILITY, REUSABILIT) . ;.
;3 EXPANDABILITY, SURVIVABILITY, PORTABILITY, INTEROPERABILITY, INTEGRITY, USABILITY) _:1. "]
139, LA
’1,) ; 1.* Is an organization of the system provided which identifies all functions and functional ::::t
N intertaces in the system? DL1(1) v|n i

2. Is a hierarchy of system identifying all modules in the system provided? SL1(1) YN oy
S 3. Are there no duplicate functions? SI.1(2) Y[N N
,§ 4.* Is an organization of the data base provided which identifies all functional groupings \.:':
of data and data flow within the system? DI.1(2) Y|N NN
' 3.% Are there provisions for selecting alternate processing capabilities? DI.1(5) YN ':‘\'

6.* Are critical system functions distributed over redundant elements or nodes? DI.!(6) YIN -

; 7.* Does the distribution of control functions ensure network operation/integrity under ano- S
"5 malous conditions? DL1(7) v|n o
| :-‘ 8.* Are logical structure and function separated in the design? DI.1(8) Y|N -‘.
’*_ 9.* Are physical structure and function separated in the design? DI.1(9) Y[N ‘:}'
-t 10.* Number of nodes that can be removed and still have each node able to communicate with -
. each remaining node: DI.1(10) i
g :j 11.* Do processes and functions have loose coupling? MO.3(1) WN .'_“

7 12.* What is the cohesion value of processes and functions? MO.3(2) T
i': 13.# Can each user utilize the system as though it were dedicated to that user? VR.1(4) YN :-_
N 14, Is the user presented with a complete logical system without regard to physical topology? '

' VR.1(5) YN .

A 13.* Do module descriptions include identification of module interfaces? SI.1(10) YN ‘;'

A o
v (NN
o 22 TOLERANCE (RELIABILITY, SURVIVABILITY) I

3 N

3. Is concurrent processing centrally controlled? AM.1(1) YN N
3 &.* s parallel processing centrally controlled? AM.1(4) YN - A
:‘:: 3.. How many error conditions are reported by the system? AM.1(2) ::,-'.:_‘

'.: ’:"
¥ * = New, *# = Moditied 3
s >

o
N ‘.':\.
.’\-

:\‘) f‘_:-‘:

p "
B
N3

£ c->

-

- -. 14.-

_'w.'-
‘\..-. -.- W*If\

~.\

"-
'b
Yy

W

o -’_.-
) S
X
e e
. -
~
208
-.‘_-:
Ky,
-.‘;«," e
4 {; -:._,-
g1 | METRIC WORKSHEET 2 SYSTEM: DATE: o
¥ DESIGN/SYSTEM LEVEL NAME: INSPECTOR: =
- ! ' ’ \ﬂ
" 6. How many of those errors are automatically fixed or bypassed and processing continues? _
] te
;S\' AM.1(2) o
. 7. How many, require operator intervention? AM.1(2) it
R 8. Are there provisions for recovery from hardware fauits? AM.4(2) [~ Y[N '-"::
1 1 9. Are there provisions for recovery from device errors? AM.5(2) ¢
10.* Are there provisions for recovery from communication errors? AM.6(2) Y|{N
;(3 11.% Are there provisions for system recovery from node or communication failures? AM.7(2) YI N A
3 5: 2.6 CHANGEABILITY (FLEXIBILITY, REUSABILITY, EXPANDABILITY) .,.
g o
1.* Percent of memory capacity uncommitted. AG.1(2)
- 2.* Percent of auxiliary storage capacity uncommitted. AG.1(3) 5
oY 3.» Percent of speed capacity uncommitted. AG.2(3) ‘:"
. E):J 4.% Spare 1/O channel capacity. AG.3(1) :‘:
;:-.\: 3.% Spare communication channel capacity. AG.3(2) ::‘-:
> 4 6.* Are processors, communication links, memory devices, and peripherals compatible .
) {of a common vendor or model)? AG.4(1) YN A~
F X 7.* Does documentation reveal performance/price of software/system for enhancement trades? f-
' : AG.4(2) YIN i
~ 8. Do specifications identify new technology tradeoft areas for software? AG.4(3) YN S
" .: 9.* Do software specifications include requirements for the criteria of the quality factor .~":f
) expandability. AG.4(4) YIN
RN 10. Number of modules. GE.I(1) ol
‘_:'J 1i. Based on hierarchy or a call/called matrix, how many modules are called by more than
».: one module? GE.1(1) e
1Y) &
2.7 SYSTEM INTERFACES (INTEROPERABILITY, SURVIVABILITY) .
N . . *
‘Q 10.* Is configuration of communication links such that failure of one node/link will not
A ; disable communication among other nodes? RE.1(1) Y IN e
5\:‘ 11.# Can node rejoin the network when it has been recovered? RE.1(%) YN L
o 12.* Is data replicated at two or more distinct nodes? RE.1(5) YN o
N -
N
2 s
% N
B4 :‘.:i
3
,‘:_ C-6 -e
AN
b
¢ ':._#
.‘.:_ v '.'.’:: DS I 4 ..:.‘_: ..:'..:: ..: ., . oy ‘:-}.:?‘.\t ;. ‘- -.\ .i:. "4 ‘- X .P'(? -f*‘.:i.\\:‘;x.*\\’\)\ :. .\‘_:. ‘\:~\\:i\: _.~..:-..-. -\

RO AN SR ~ . A
-,_,.,._-.,_ LAYy \ ay\'* ‘v‘.*' AR

>,
.‘_..4‘
o
n
?-\.'.
N
N
.\.':.
o | METRIC WORKSHEET 2 SYSTEM: DATE:
e DESIGN/SYSTEM LEVEL NAME; PECTOR:
g 13.# Are processes and functions separated as logical "wholes" to minimize interface complex-
W ity? AU.I(1) Y|N
) 14.» Estimated number of lines of interface code. AU.1(2)
N 15.* Estimated number of interface modules. AU.1(3)
-l 16.* Estimated time engaged in communication. AU.1(4).
17.* Does each CPU/system have a separate power source? AU.2(1) YN
2 18.* Does each scheduling unit test its own operation, communication links, memories, and
“:-‘J peripherals? AU.2(2) YN
3 (:' 19.# Does the software system include a word-processing capability? AU.2(3) Y|N
Al
o N
2.8 DATA BASE (RELIABILITY, MAINTAINABILITY, VERIFIABILITY, FLEXIBILITY, REUSABILITY
o EXPANDABILITY, USABILITY, INTEGRITY, SURVIVABILITY, CORRECTNESS)
N
L l. Number of unique data items in data base SI.1(6)
o 2. Number of preset data items SI.1(6)
e 3. Number of major segments (files) in data base S1.1(7)
" 4.* Is the data base structured so that at least one copy of a file/library resides at a node
-,\' which is accessible to ail other nodes? DI.1(4) YIN
) 3.* Is the data base structured so that users need not care about changes in the actual
, -,‘: storage structure of data? VR.1(2) YIN
Ay 6.* Are there provisions for maintaining data base integrity under anomalous conditions? RE.1(3) { YN
7.* Can users manipulate data as if it were not replicated elsewhere in the system? VR.1(3) YN
:) 2.11 INSPECTOR'S COMMENTS
M
" Make any general or specific comments about the quality observed while applying this checklist.
)
Qg‘.l
4 -
’
1

- M. - '5. ‘:

1} > 3™
i

U
e B

]
‘e
: L]
2 c-7
‘..’.
p—
A R B e P T T~ S L e e . - . ..
8 eh GRS ER R N R R S SO S , .) -
ay LAY LA N AT . » . D
HAh SRR RLEAE ARG LY ARt RN . - :
N

L ERNMIAP ANE "0 e N

METRIC WORKSHEET 3 SYSTEM NAME: DATE: K
DESIGN/MODULE LEVEL MODULE NAME: INSPECTOR: J
Pa——
°3

3.1 STRUCTURE (RELIABILITY, MAINTAINABILITY, VERIFIABILITY, FLEXIBILITY, REUSABILITY, ~
EXPANDABILITY, CORRECTNESS, PORTABILITY, INTEROPERABILITY, SURVIVABILITY) ’wj

1. s an organization of the system provided which identifies all modules and module inter- \
faces? DL.I(1) YIN

2.* s an organization of the data base provided which identifies all data base modules and Y
module interfaces? DI.1(2) YN \:
3. How many Decision Points are there? SI.3 "\‘:-

[N How many subdecision Points are there? SI.3 RS
5. How many conditional branches are there? SI.3 g

6. How many unconditional branches are there? SI.3

7. Is the module dependent on the source of the input or the destination of the output? SI.1(3) YN _".-:
8. Is the module dependent on knowledge of prior processing SI.1(3) YN _'::-
9. Number of entrances into modules SI.1(5) T
10. Number of exits from module SL1(5) .
11.* Does the module description include input, output, processing, and limitations? SL1(4) Y N
12.* 1s code written according to a programming standard? SL4(17) Y |N -
13.# Are macros and subroutines used to avoid repeated and redundant code? SL.4(18) YN <7

18.* Number of input parameters. SP.1(1)
15.* Number of output values used. SP.1(2)
16.* Number of output parameters. SP.1(2)

17.* Can the same function not be accomplished by multiple variant forms? SP.1(3) Y|N

18.* Does each function and module have loose coupling? MQ.3(1) Y|N o
19.# What is the cohesion value of each function and module? MO.3(2)) .
20.* Do module descriptions include identification of module interfaces? SI.1(10) YN ~ A

3.2 TOLERANCE (RELIABILITY, SURVIVABILITY)

1. When an error condition is detected, is it passed to calling module? AM.1(3) Y [N ‘_:'_
3. Are values of inputs range tested? AM.2(2) YN -
4. Are conflicting requests and illegal combinations identified and checked? AM.2(3) YN o

* = New, *# = Moditied

K.,

{

."".“‘ f,‘.f‘." ¥ X

.

i
5

(RN

s é 0-'
SIS

N

a8 a "l"

XX

LY

v.‘- v
AR

.~ 4

- &

aich

i\'fa

IOV A

Lve G

o

P

A e

N et a E lib .'.;l;.ih‘~;n;Lil E —..~;<E~;. . -‘- "'Tr'v.—f-\V.v'..-.v-.

R R '.‘a P R I 4

|_METRIC WORKSHEET 3 — SYSTEM NAME; DATE:
|_DESIGN/MODULE LEVEL _ MODULE NAME: INSPECTOR:
5. Is there a check to see if all necessary data is available before processing begins? AM.2(5) Y|N
6. Is all input checked, reporting all errors, before processing begins? AM.2(4) Y|N
7. Are loop and multiple transfer index parameters range tested before use? AM.3(2) Y{N
8. Are subscripts range tested before use? AM.3(3) YN
9. Are outputs checked for reasonableness before processing continues? AM.3(4) YIN
10.* Are checksums computed and transmitted with all messages? AM.6(3) Y|N
11.* Are checksums computed and compared upon message reception? AM.6(4) Y{IN
12.* Are the number of transmission retries limited? AM.6(5) YN
13.* Are adjacent nodes checked periodically for operational status? AM.7(3) YN
14.% Are there alternate strategies for message routing? AM.7(4) Y|N
3.5 REFERENCES (MAINTAINABILITY, FLEXIBILITY, VERIFIABILITY, PORTABILITY, REUSABIL -
ITY, INTEROPERABILITY, EXPANDABILITY, SURVIVABILITY)

5. Number of calling sequence parameters MO.2(3)

6. How many calling sequence parameters are contro} variables? MO.2(3)

7. Is input passed as calling sequence parameters MO.2(4) Y|N
8. Is output passed back to calling module? MO.2(5) YN
9. Is control returned to calling module? MO.2(6) YN
10. Is temporary storage shared with other modules? MO.2(7) YN
3.6 CHANGEABILITY (FLEXIBILITY, REUSABILITY, EXPANDABILITY)

1. Is logical processing independent of storage specification? AG.1(1) YN
2. Percent of memory allocation uncommitted. AG.1(2)

3. Are accuracy, convergence, or timing attributes and limitations parametric? AG.2(1) Y|N
4. Is module table driven? AG.2(2) YN
5.* Percent of cycle time allocation uncommitted. AG.2(3)

6.* 1/O channel time allocation uncommitted. AG.3(1)

7.* Communication channel time allocation uncommitted. AG.3(2)

8. Does the module not mix input, output and processing functions in same module? GE.2(1) YJ N
9. Number of machine dependent functions performed? GE.2(2)

LA

" l' I 4 l' l. "

o A

W e b
L
.
da

& 5 58

o,

Q‘

ax o

v,

‘-

P I NI AN R IR
QAT E LV CRAat R L6 L0y SR OL TN
‘o \f\."\"s"r $ - "1.14.'-:-.'4'-.}:':«." -\.'tw'

AT~

METRIC WORKSHEET 3 SYSTEM NAME: DATE:

k- DESIGN/MODULE LEVEL MODULE NAME: INSPECTOR:

10. Is processing not data volume limited? GE.2(3)
11. Is processing not data value limited? GE.2(%)

3.7 SYSTEM INTERFACES (SURVIVABILITY)

t.* Estimated lines of interface code. AU.1(2)

2.+ Estimated lines of source code. AU.1(2)

3.* Estimated number of interface modules. AU.1(3)
4. Estimated time engaged in communication. AU.1(%)

3.10 INSPECTOR'S COMMENTS

Make any specific or general comments about the quality observed while applying this checklist.

C-10

"
<y -
AR, Y '.\}.,'.‘ si'\

a0) bR 8 oL\

PR AT Y
et
L

r

e

PR NN

R e A
. ". '.:.' A.‘ ‘.I. ;
. |’ ;.. 0 %

2
y

'4-.
I3
e

A
.

e =2
) S
8
R =
N -
At T
: ﬁ;:: METRIC WORKSHEET 4 SYSTEM NAME: DATE: X
:::: SOURCE CODE/MODULE LEVEL MODULE NAME: INSPECTOR: :‘:{
- 8] STRUCTURE (RELIABILITY, MAINTAINABILITY, VERIFIABILITY, FLEXIBILITY, PORTABILIT) .'-'._.
pne REUSABILITY, INTEROPERABILITY, EXPANDABILITY, SURVIVABILITY) e
» S
o 1. Number of lines of code MO.2(2) R
24, 2. Number of lines excluding comments SL4(2) T
4. Number of declarative statements SL.4(9) -
X 5. Number of data manipulation statements SL4(9) .._:_
:‘ 6. Number of statement labels (Do not count format statements SI.4(6) ::'_-:
R 7. Number of entrances into module SI.1(5) -:.
N ,;-;-' 3. Number of exits tfrom module SI1(5) ._;':
: 9. Maximum nesting level SL4(7) =
0 10. Number of decision points (IF, WHILE, REPEAT, DO, CASE) SL3 ™
:‘7': I1. Number of sub-decision points. SI.3 :E
I::. 12. Number of conditional branches (computed go to) SL.%(8) ;?,
. ?-'. 13. Number of unconditional branches (GOTO, ESCAPE) SI.4(8) : i
= 14, Number of loops (WHILE, DO) SI.4(3)
15. Number of loops with jumps out of loop SI.4(3) e
o 16. Number of loop indices that are modified SL4(4) Ny
R 17. Number of constructs that perform module modifications (SWITCH, ALTER) SL4(3) i
:: ; 18. Number of negative or complicated compound boolean expressions SI1.4(2) .:“:'
sf’ 19. Is a structured language used S1.2 Y| N "‘
\ 20. Is flow top to bottom (are there no backward branching GOTOs) SL.4(1) Y] N .
' 21.* [s code written according to a programming standard? S1.4(17) YI N < :.
q.._v 22.* Are macros and subroutines used to avoid repeated and redundant code? S1.4(18) YIN -
bl \:}l ES
N 8.2 TOLERANCE (RELIABILITY, SURVIVABILITY) ~
1. How many loop and multiple transfer index parameters are not range tested before use? “
28 AM.3(2) o
:-\' 2. Are subscript values range tested before use? AM.3(3) Y|N .-:j: '
:: 3. When an error condition occurs, is it passed to the calling module? AM.1(3) YN :-::
. ::T
h ‘.::3' ::_:‘
q'.'f .):._
b 5
N b
% 3
o 4
P c-11 S
~. -.' K
— .«
I N A o
N R s T
LI .;n 1N ' ¢ ".! 1 J.\ O ::x' .

SN
AR
oo
o
AN
A
-
N PR
3 | METRIC VORKSHEET & SYSTEM NAME: DATE:
' SOURCE CODE/MODULE LEVEL MODULE NAME: INSPECTOR: -
8. Are the results of a computation checked before outputting or before processing continues? .
AM.3(®) YIN -
5.% Are all data available prior to processing? AM.2(3) YIN /;
Ca
4.5 REFERENCES (MAINTAINABILITY, VERIFIABILITY, FLEXIBILITY, PORTABILITY REUSABILIT .‘::.]
INTEROPERABILITY, EXPANDABILITY, SURVIVABILITY) .-
1. Number of calls to other modules MO.2(1) .
3. Number of calling sequence parameters MO.2(3) -
8. How many elements in calling sequences are not parameters? MO.2(3) .-:.
5. How many of the calling parameters (input) are control variables? MO.2(3) :{‘.}
6. How many parameters passed to or from other modules are not defined in this module? -
MO.2(3) A
7. Is input data passed as parameter? MO.2(4) YIN ::~.‘_
8. s output data passed back to calling module? MO.2(5) YIN X
9. Is control returned to calling module? MO.2(6) Y|N el
"N
4.6 CHANGEABILITY (FLEXIBILITY, REUSABILITY, EXPANDABILITY) e
-.‘_':.
I. s module table driven? AG.2(2) D o
2. Are there any limits to data values that can be processed? GE.2(4) YN :-'_'-:'
3. Are there any limits to amounts of data that can be processed? GE.2(3) YN L
[il
&. Are accuracy, convergence and timing attributes parametric? AG.2(1) YN
5. Amount of memory used. AG.1(2) /
1.{’:
87 WINPUT/OUTPUT (RELIABILITY, PORTABILITY, REUSABILITY, SURVIVABILITY) :..-N
'
A
8. Are inputs range-tested (for inputs via calling sequences, global data, and input statements) L'- =
AM.2(2) YN e
5. Are possible conflicts or illegal combinations in inputs checked? AM.2(3) Y IN e
6. Is there a check to determine if all data is available prior to processing? AM.2(5) Y N : -
#* z New, *+ = Modified ‘_‘,':
“ “:.:
S e
N A
\ =
. u“ -
s:' e
4 -\ -
)
R c-12 Ry
"‘ l\.:
o -
P

ot

S
ANARA N
IS g

et

-~ i .V'. Tt " q' -- --" .‘. ‘e
. ..-.q.$1 “ .‘-'.-q O \.'.“l‘..n.

2

-~ - - By Pt oC R ¥ e et Pl el A Caf K a0 e® e . e e e T o Tale M ‘.
N e
9]
) D
s 2
* At N
\ .bQ »
) ; '.-- >
] LI LI
Y Ve
A i
-rg i
Y |_METRIC WORKSHEET & _SYSTEM NAME: DATE: o
ok % SOURCE CODE/MODULE LEVEL MODULE NAME: INSPECTOR: \-
~ o
‘ 7. Is all input checked, reporting all errors, before processing begins? AM.2(4) Y] N : -
o 8. Number of lines of interface code. AU.1(2) RS
. 9.% Number of modules with interface code. AU.1(3) -y
: '_ 49 DATA (CORRECTNESS, RELIABILITY, MAINTAINABILITY, VERIFIABILITY, EFFICIENCY .-;;-
v FLEXIBILITY, REUSABILITY, EXPANDABILITY) -
o .-'.
3 1. Number of local variables SI.4(10) \
_;*‘:j 2. Number of global variables SL4(10)
N 3. Number of global variables renamed EF.4(3) N
e, 6.* Number of executable statements. SI.4(11) "3
SSX 8.11 DYNAMIC MEASUREMENTS (EFFICIENCY, RELIABILITY, FLEXIBILITY, EXPANDABILLITY :'::
) SURVIVABILITY) N
:{ -.':\
;. 2. During module/development testing, what was run time? AG.2(3) i
' 6.* Amount of I/O channel capacity used. AG.3(1) .
o 7.* Amount of communication channel capacity used. AG.3(2) R
! ‘. - ’I
e 8.* Time engaged in communication. AU.1(4) e
‘\ ’ .Q.’--
"y e
& §.12 INSPECTORS COMMENTS s
‘. r.‘:..
Make any general or specific comments that rejate to the quality observed while applying this checklist. e
o o
k :-.‘.-
s KN
:..'.‘ ':: Ny
= -\juA
[o
A T
L) W
' e =
b -
.
‘ -‘_‘-
k3 =
1” s'-;-
M NEY
N c-13 ROy
v g
- P
‘; :s- {.- ~."" . 4' q"’ - ,, " v‘:'. -‘.-_ \- ':i‘:)\.'. -j.
:,\ "\ RN .

v
\h. S
DR AR

* e, I
f r

™

A

>

- ~.

Y
Ll

A

4

APPENDIX D
RATING QUESTIONNAIRES

.Sq-\‘ u-v-ck.éﬂ o A,

e B e Y I e R I e e I R I AL

Rt
S
b
Y PROJECT
""'4 M
508 SURVIVABILITY -
[) b _‘:1
>~‘v M
On a scale of 1 to 10 (ten highest) please rate the software for this system with respect to the following —
attributes. N
;; ATTRIBUTE DESCRIPTION RATING g
£ o
- o Anomaly Management o Those attributes of the software -s.‘
which provide for continuity of -
operations under and recovery from s
20 non-nominal conditions. -
X
g o Automony o Those attributes of the software .
. which determine its dependency on o
A interfaces. U
iyt ~am—-
o Distributedness o Those attributes of the software
i which determine the degree to which e
v software functions are geographically N
o or logically separated within the -
A system. 7
.‘ - "-
o o Modularity o Those attributes of the software Ik
which provide a structure of highly ool
cohesive modules with optimum coup- bz
R un8‘ e
Vil o Reconfigurability o Those attributes of the software ro-
" which provide for continuity of g
system operation when one or more S
v processors, storage units, or com- =
munications links fail. .
'y o
X o Survivability o Probability that software will RS
‘o continue to perform or support Y,
-~ critical functions when a portion R
py of the system is inoperable, Y
o Augmentability o Those attributes of the software which '
' provide for expansion of capability for e
o functions and data. -~
))
- o Generality o Those attributes of the software which i:;.
N provide breadth to the functions per- 1‘»\—-
- formed with respect to the application. Hoo®
a Lt
. R
N \.‘f
£a e,
¥ -
‘;1 ::‘
) R
4 e
S :‘ .
‘ "
: D'z ;:: «
& S
-

\.._,,s_.\::w. ,d.,_, ._::_".:‘ T ",

D W - Y AR KRNI DR A Y ARSI

),
’
)
*
.
’
'
.
s
1)
.
f
.
t

FoL At

3,

7, -
20 :
el
: Gd
i)

. PROJECT o b,
IRD o
a1
F EXPANDABILITY .
Y On a scale of | to 10 (ten highest) please rate the software for this system with respect to the following S
” attributes. o
"1.3_ ATTRIBUTE DESCRIPTION RATING e
LS. N
3 i o Modularity o Those attributes of the software which o
- provide a structure of highly cohesive
modules with optimum coupling.
e o Simplicity o Those attributes of the software which g
N provide for the definition and implemen- ‘o

<4 tation of functions in the most non- L

o complex and understandabie manner. -

Tt .

" o Specificity o Those attributes of the software which v

provide singularity in the definition
IR and implementation of functions. s
‘ $:‘_. o Virtuality o Those attributes of the software which Dy

. present a system that does not require Na
,$(. user knowledge of the physical, logical, o
o or topological characteristics (e.g., o

number of processors/disks, storage lo-

X cations). .
4 .\‘ ..:'-
é*:ﬁ o Expandability o Ease with which the software capability
f-“v or performance can be increased by en-

Q& hancing current functions or adding new -
§ ' functions/data.
2N -

: Dlease estimate the following in terms of manmonths of effort: <

-~
,,::.. o Effort to expand the software for this -,
T application. .-:-
oy g
MY o Equivalent effort to do the same task from A

B scratch for this application. =
A b
::q =
e o
AN s
D g [_’ d
- 1 ;Q:'
L S

A GO R R S R R R
X 4,-\:-.'_5.‘}.'_-. LA LR CRN IR

J e N B R DN

— s - hdl WL W e e —w /AN A Al e
> MR Ahne 2nan 20 Tairte g 2 m-ue g m a1 R el Srt ara goe Sn Be Sdins S BV 5 Tt iRty b SNl v St - Te— - . . »}
- - - L Lo o - . - N _ . Lo . . I . . - . . .

S L3 L3 23 23 23 23 23 23 2 23 13 rd 23 T

MISSION - E
of =
Rome Avr Development Center "‘?

RADC plans and executes nesearch, development, test and 1
selected acquisition programs in bgppolut of Command, Control]
Communications and Intelligence (C31) activities. Technical T
and engineering support within areas of technical competence L
48 provided to ESD Program 0ffices (POs) and other ESD W
elements. The principal technical mission areas are T
communications, electromagnetic guidance and control, sur-

veillance of ground and aercspace obfects, intelligence data]
collection and handling, information system technology, 1
ioh;oaphmn& :}opagatéon, solid state sciences, mécnomc
physics a ectronic reliability, maintainability
compatibility.

O NN
A,

A ey S ey

